SLUSET3 December   2022 BQ28Z620

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Description (continued)
  6. BQ28Z620 Changes from BQ28Z610-R1
  7. Pin Configuration and Functions
  8. Specifications
    1. 8.1  Absolute Maximum Ratings
    2. 8.2  ESD Ratings
    3. 8.3  Recommended Operating Conditions
    4. 8.4  Thermal Information
    5. 8.5  Supply Current
    6. 8.6  Power Supply Control
    7. 8.7  Power-On Reset (POR)
    8. 8.8  Internal 1.8-V LDO
    9. 8.9  Current Wake Comparator
    10. 8.10 Coulomb Counter
    11. 8.11 ADC Digital Filter
    12. 8.12 ADC Multiplexer
    13. 8.13 Cell Balancing Support
    14. 8.14 Internal Temperature Sensor
    15. 8.15 NTC Thermistor Measurement Support
    16. 8.16 High-Frequency Oscillator
    17. 8.17 Low-Frequency Oscillator
    18. 8.18 Voltage Reference 1
    19. 8.19 Voltage Reference 2
    20. 8.20 Instruction Flash
    21. 8.21 Data Flash
    22. 8.22 Current Protection Thresholds
    23. 8.23 Current Protection Timing
    24. 8.24 N-CH FET Drive (CHG, DSG)
    25. 8.25 I2C Interface I/O
    26. 8.26 I2C Interface Timing
    27. 8.27 Typical Characteristics
  9. Detailed Description
    1. 9.1 Overview
    2. 9.2 Functional Block Diagram
    3. 9.3 Feature Description
      1. 9.3.1  Battery Parameter Measurements
        1. 9.3.1.1 BQ28Z620 Processor
      2. 9.3.2  Coulomb Counter (CC)
      3. 9.3.3  CC Digital Filter
      4. 9.3.4  ADC Multiplexer
      5. 9.3.5  Analog-to-Digital Converter (ADC)
      6. 9.3.6  ADC Digital Filter
      7. 9.3.7  Internal Temperature Sensor
      8. 9.3.8  External Temperature Sensor Support
      9. 9.3.9  Power Supply Control
      10. 9.3.10 Power-On Reset
      11. 9.3.11 Bus Communication Interface
      12. 9.3.12 I2C Timeout
      13. 9.3.13 Cell Balancing Support
      14. 9.3.14 N-Channel Protection FET Drive
      15. 9.3.15 Low Frequency Oscillator
      16. 9.3.16 High Frequency Oscillator
      17. 9.3.17 1.8-V Low Dropout Regulator
      18. 9.3.18 Internal Voltage References
      19. 9.3.19 Overcurrent in Discharge Protection
      20. 9.3.20 Short-Circuit Current in Charge Protection
      21. 9.3.21 Short-Circuit Current in Discharge 1 and 2 Protection
      22. 9.3.22 Primary Protection Features
      23. 9.3.23 Gas Gauging
      24. 9.3.24 Charge Control Features
      25. 9.3.25 Authentication
    4. 9.4 Device Functional Modes
      1. 9.4.1 Lifetime Logging Features
      2. 9.4.2 Configuration
        1. 9.4.2.1 Coulomb Counting
        2. 9.4.2.2 Cell Voltage Measurements
        3. 9.4.2.3 Current Measurements
        4. 9.4.2.4 Auto Calibration
        5. 9.4.2.5 Temperature Measurements
  10. 10Applications and Implementation
    1. 10.1 Application Information
    2. 10.2 Typical Applications
      1. 10.2.1 Design Requirements (Default)
      2. 10.2.2 Detailed Design Procedure
        1. 10.2.2.1 Setting Design Parameters
        2. 10.2.2.2 Calibration Process
        3. 10.2.2.3 Gauging Data Updates
      3. 10.2.3 Application Curve
  11. 11Power Supply Recommendations
  12. 12Layout
    1. 12.1 Layout Guidelines
    2. 12.2 Layout Example
  13. 13Device and Documentation Support
    1. 13.1 Documentation Support
    2. 13.2 Receiving Notification of Documentation Updates
    3. 13.3 Support Resources
    4. 13.4 Trademarks
    5. 13.5 Electrostatic Discharge Caution
    6. 13.6 Glossary
  14. 14Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Application Information

The BQ28Z620 gas gauge is a primary protection device that can be used with a 1- to 2-series Li-ion/Li-polymer battery pack. To implement and design a comprehensive set of parameters for a specific battery pack, the user needs Battery Management Studio (BQStudio), which is a graphical user-interface tool installed on a PC during development. The firmware installed in the product has default values, which are summarized in the BQ28Z620 Technical Reference Manual for this product. Using the BQStudio tool, these default values can be changed to cater to specific application requirements during development once the system parameters, such as fault trigger thresholds for protection, enable/disable of certain features for operation, configuration of cells, chemistry that best matches the cell used, and more are known. This data can be referred to as the "golden image."