SLUSF53 August   2024 BQ2969

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Pin Details
        1. 7.3.1.1 Input Sense Voltage, Vx
        2. 7.3.1.2 Output Drive, OUT
        3. 7.3.1.3 Supply Input, VDD
        4. 7.3.1.4 Regulated Supply Output, REG
      2. 7.3.2 Overvoltage Sensing for OUT
      3. 7.3.3 Regulator Output Voltage
    4. 7.4 Device Functional Modes
      1. 7.4.1 NORMAL Mode
      2. 7.4.2 OVERVOLTAGE Mode
      3. 7.4.3 UNDERVOLTAGE Mode
      4. 7.4.4 CUSTOMER TEST MODE
  9. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
      3. 8.2.3 Application Curves
  10. Power Supply Recommendations
  11. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  12. 11Device and Documentation Support
    1. 11.1 Third-Party Products Disclaimer
    2. 11.2 Receiving Notification of Documentation Updates
    3. 11.3 Support Resources
    4. 11.4 Trademarks
    5. 11.5 Electrostatic Discharge Caution
    6. 11.6 Glossary
  13. 12Revision History
  14. 13Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Layout Example

An example circuit layout using the BQ2969 device in a 4-series cell design is described below in Figure 10-1 and Figure 10-2. The design implements the schematic shown in Figure 8-2 and Figure 8-3, and uses a 2-layer circuit card assembly with cell connections on the left edge and pack connections on the right edge of the board.

Care must be taken to place the RC filter components close to the VC pins of the device. Be sure to use a sufficiently wide trace for the NFET source and drain connections to support the maximum current that flows during a fuse blow event.

BQ2969 BQ2969 Two-Layer Board Layout - Top Layer Figure 10-1 BQ2969 Two-Layer Board Layout - Top Layer
BQ2969 BQ2969 Two-Layer Board Layout - Bottom Layer Figure 10-2 BQ2969 Two-Layer Board Layout - Bottom Layer