The Texas Instruments bq3050 Compensated End-of-Discharge Voltage (CEDV) Gas Gauge and Battery Pack Manager is a single-chip solution that provides a rich array of features for protection, authentication, and data gathering for 2-series, 3-series, and 4-series cell Li-Ion and Li-Polymer battery packs.
Using its integrated high-performance analog peripherals, the bq3050 device measures and maintains an accurate record of available capacity, voltage, current, temperature, and other critical parameters in Li-Ion or Li-Polymer batteries, and reports this information to the system host controller over an SMBus v1.1 compatible interface.
The bq3050 provides software-based 1st-level and 2nd-level safety protection for overvoltage, undervoltage, overtemperature, and overcharge conditions, as well as hardware-based protection for overcurrent in discharge and short circuit in charge and discharge conditions.
SHA-1 authentication with secure memory for authentication keys enables identification of genuine battery packs beyond any doubt.
The compact 38-lead TSSOP package minimizes solution cost and size for smart batteries while providing maximum functionality and safety for battery gauging applications.
PART NUMBER | PACKAGE | BODY SIZE (NOM) |
---|---|---|
bq3050 | TSSOP (38) | 9.70 mm × 4.40 mm |
Changes from C Revision (December 2014) to D Revision
Changes from B Revision (October 2013) to C Revision
Changes from A Revision (June 2011) to B Revision
Changes from * Revision (January 2011) to A Revision
PIN NAME | PIN NUMBER | TYPE(1) | DESCRIPTION |
---|---|---|---|
CHG | 1 | O | Charge N-FET gate drive |
PCR | 2 | O | Internal Precharge FET output |
BAT | 3 | P | Alternate power source |
VC1 | 4 | I | Sense input for positive voltage of top most cell in stack and cell balancing input for top most cell in stack |
VC2 | 5 | I | Sense input for positive voltage of third lowest cell in stack and cell balancing input for third lowest cell in stack |
VC3 | 6 | I | Sense input for positive voltage of second lowest cell in stack and cell balancing input for second lowest cell in stack |
VC4 | 7 | I | Sense input for positive voltage of lowest cell in stack and cell balancing input for lowest cell in stack |
VSS | 8 | P | Device ground |
VSS | 9 | P | Device ground |
TS1 | 10 | AI | Temperature sensor 1 thermistor input |
SRP | 11 | AI | Differential Coulomb Counter input |
NC | 12 | — | Not internally connected. Connect to VSS. |
SRN | 13 | AI | Differential Coulomb Counter input |
NC | 14 | — | Not internally connected. Connect to VSS. |
TS2 | 15 | AI | Temperature sensor 2 thermistor input |
PRES | 16 | I | Host system present input |
SMBD | 17 | I/OD | SMBus v1.1 data line |
NC | 18 | — | Not internally connected. Connect to VSS. |
SMBC | 19 | I/OD | SMBus v1.1 clock line |
DISP | 20 | I | Display active input |
NC | 21 | — | Not internally connected. Connect to VSS. |
LED5 | 22 | O | LED display constant current sink |
LED4 | 23 | O | LED display constant current sink |
LED3 | 24 | O | LED display constant current sink |
LED2 | 25 | O | LED display constant current sink |
LED1 | 26 | O | LED display constant current sink |
RBI | 27 | P | RAM backup |
REG25 | 28 | P | 2.5-V regulator output |
VSS | 29 | P | Device ground |
VSS | 30 | P | Device ground |
REG33 | 31 | P | 3.3-V regulator output |
TEST | 32 | — | Test pin, connect to VSS through 10-kΩ resistor |
FUSE | 33 | O | Fuse drive |
PCHGIN | 34 | I | Internal Precharge FET input |
VCC | 35 | P | Power supply voltage |
GPOD | 36 | I/OD | High voltage general purpose I/O |
PACK | 37 | P | Alternate power source |
DSG | 38 | O | Discharge N-FET gate drive |
VALUE | UNIT | |||
---|---|---|---|---|
V(ESD) | Electrostatic discharge | Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) | ±2000 | V |
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) | ±500 |
MIN | NOM | MAX | UNIT | ||||
---|---|---|---|---|---|---|---|
Supply voltage | VCC, PACK, PCHGIN, PCR | 25 | V | ||||
BAT | 3.8 | VVC2 + 5.0 | |||||
VSTARTUP | Start up voltage at PACK | 3.0 | 5.5 | V | |||
VIN | Input voltage range | VC1, BAT | VVC2 | VVC2 + 5.0 | V | ||
VC2 | VVC3 | VVC3 + 5.0 | |||||
VC3 | VVC4 | VVC4 + 5.0 | |||||
VC4 | VSRP | VSRP + 5.0 | |||||
VCn – VC(n+1), (n=1, 2, 3, 4) | 0 | 5.0 | |||||
PACK | 25 | ||||||
SRP to SRN | –0.2 | 0.2 | |||||
CREG33 | External 3.3V REG capacitor | 1 | µF | ||||
CREG25 | External 2.5V REG capacitor | 1 | µF | ||||
TOPR | Operating temperature | –40 | 85 | °C |
THERMAL METRIC | bq3050 | UNIT | |
---|---|---|---|
TSSOP (DBT) | |||
38 PINS | |||
RθJA | Junction-to-ambient thermal resistance | 64.2 | °C/W |
RθJC(top) | Junction-to-case(top) thermal resistance | 16.5 | |
RθJB | Junction-to-board thermal resistance | 31.2 | |
ψJT | Junction-to-top characterization parameter | 0.3 | |
ψJB | Junction-to-board characterization parameter | 26.9 | |
RθJC(bot) | Junction-to-case(bottom) thermal resistance | n/a |
PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|---|
ICC | Normal | CHG on, DSG on, no Flash write | 410 | µA | ||
Sleep | CHG on, DSG on, no SBS communication | 160 | ||||
CHG off, DSG off, no SBS communication | 80 | |||||
Shutdown | 3.7 |
PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|---|
VIT– | Negative-going voltage input | At REG25 | 1.9 | 2.0 | 2.1 | V |
VHYS | POR Hysteresis | At REG25 | 65 | 125 | 165 | mV |
PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|---|
VWAKE | VWAKE Threshold | VWAKE | 0.2 | 1.2 | 2.0 | mV |
VWAKE | 0.4 | 2.4 | 3.6 | |||
VWAKE | 2.0 | 5.0 | 6.8 | |||
VWAKE | 5.3 | 10 | 13 | |||
VWAKE_TCO | Temperature drift of VWAKE accuracy | 0.5% | °C | |||
tWAKE | Time from application of current and wake of bq3050 | 0.2 | 1 | ms |
PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|---|
I(RBI) | RBI data-retention input current | VRBI > V(RBI)MIN, VCC < VIT | 20 | 1100 | nA | |
VRBI > V(RBI)MIN, VCC < VIT, TA= 0°C to 70°C |
500 | |||||
V(RBI) | RBI data-retention voltage | 1 | V |
PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|---|
VREG33 | Regulator output voltage | 3.8 V < VCC or BAT ≤ 5 V, ICC ≤4 mA |
2.4 | 3.5 | V | |
5V < VCC or BAT ≤ 6.8 V, ICC ≤13 mA |
3.1 | 3.3 | 3.5 | |||
6.8 V < VCC or BAT ≤ 20 V, ICC ≤ 30 mA |
3.1 | 3.3 | 3.5 | |||
IREG33 | Regulator output current | 2 | mA | |||
ΔV(VDDTEMP) | Regulator output change with temperature | VCC or BAT = 14.4 V, IREG33 = 2 mA | 0.2% | |||
ΔV(VDDLINE) | Line regulation | VCC or BAT = 14.4 V, IREG33 = 2 mA | 1 | 13 | mV | |
ΔV(VDDLOAD) | Load regulation | VCC or BAT = 14.4 V, IREG33 = 2 mA | 5 | 18 | mV | |
I(REG33MAX) | Current limit | VCC or BAT = 14.4 V, VREG33 = 3 V | 70 | mA | ||
VCC or BAT = 14.4 V, VREG33 = 0 V | 33 |
PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|---|
VREG25 | Regulator output voltage | IREG25 = 10 mA | 2.35 | 2.5 | 2.55 | V |
IREG25 | Regulator Output Current | 3 | mA | |||
ΔV(VDDTEMP) | Regulator output change with temperature | VCC or BAT = 14.4 V, IREG25 = 2 mA | 0.25% | |||
ΔV(VDDLINE) | Line regulation | VCC or BAT = 14.4 V, IREG25 = 2 mA | 1 | 4 | mV | |
ΔV(VDDLOAD) | Load regulation | VCC or BAT = 14.4 V, IREG25 = 2 mA | 20 | 40 | mV | |
I(REG33MAX) | Current limit | VCC or BAT = 14.4 V, VREG25 = 2.3 V | 65 | mA | ||
VCC or BAT = 14.4 V, VREG25 = 0 V | 23 |
PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|---|
VIH | High-level input | DISP, PRES, SMBD, SMBC | 2.0 | V | ||
VIL | Low-level input | DISP, PRES, SMBD, SMBC | 0.8 | V | ||
VOL | Low-level output voltage | SMBD, SMBC | 0.4 | V | ||
CIN | Input capacitance | DISP, PRES, SMBD, SMBC | 5 | pF | ||
ILKG | Input leakage current | DISP, PRES, SMBD, SMBC | 1 | μA | ||
IWPU | Weak Pull Up Current | PRES, VOH = VREG25 – 0.5 V | 60 | 120 | μA | |
I(DISP) | DISP source currents | DISP active, DISP = VREG25 – 0.6 V | –3 | mA | ||
ILKG(DISP) | DISP leakage current | DISP inactive | –0.22 | 0.22 | μA | |
RPD(SMBx) | SMBC, SMBD Pull-Down | TA = –40 to 100˚C | 550 | 775 | 1000 | kΩ |
PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|---|
V(FETON) | Output voltage, charge, and discharge FETs on | VO(FETONDSG) = V(DSG) – VPACK, VGS connect 10 MΩ, VCC 3.8 V to 8.4 V | 8.0 | 9.7 | 12 | V |
VO(FETONDSG) = V(DSG) – VPACK, VGS connect 10 MΩ, VCC > 8.4 V | 9.0 | 11 | 12 | |||
VO(FETONCHG) = V(CHG) – VBAT, VGS connect 10 MΩ, VCC 3.8 V to 8.4 V | 8.0 | 9.7 | 12 | |||
VO(FETONCHG) = V(CHG) – VBAT, VGS connect 10 MΩ, VCC > 8.4 V | 9.0 | 11 | 12 | |||
V(FETOFF) | Output voltage, charge and discharge FETs off | VO(FETOFFDSG) = V(DSG) – VPACK | –0.4 | 0.4 | V | |
VO(FETOFFCHG) = V(CHG) – VBAT | –0.4 | 0.4 | ||||
tr | Rise time | CL= 4700 pF RG= 5.1 kΩ VCC < 8.4 VDSG: VBAT to VBAT + 4 V VCHG: VPACK to VPACK + 4 V |
800 | 1400 | μs | |
CL = 4700 pF RG = 5.1 kΩ VCC > 8.4 VDSG: VBAT to VBAT + 4 V VCHG: VPACK to VPACK + 4 V |
200 | 500 | ||||
tf | Fall time | CL = 4700 pF RG = 5.1 kΩ VDSG: VBAT + VO(FETONDSG) to VBAT + 1 V VCHG: VPACK + VO(FETONCHG) to VPACK + 1 V |
80 | 200 | μs |
PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|---|
IPCHGMAX | Maximum Precharge current | 3-cell and 4-cell configuration | 100 | mA | ||
RPCHG_RDSON | Internal Precharge FET RDSON | VDS(PRECHG) ≥ 1 V, VCC < 8.4 V | 30 | 55 | 85 | Ω |
VDS(PRECHG) ≥ 1 V, VCC ≥ 8.4 V | 15 | 30 | 55 |
PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|---|
VPU_GPOD | GPOD Pull-Up Voltage | VCC | V | |||
VOL_GPOD | GPOD Output Voltage Low | IOL = 1 mA | 0.3 | V |
PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|---|
VOH(FUSE) | High Level FUSE Output | VCC = 3.8 V to 9 V | 2.4 | 8.5 | V | |
VCC = 9 V to 25 V | 7 | 8 | 9 | |||
VIH(FUSE) | Weak pull-up current in off state(1) | 2.8 | V | |||
100 | nA | |||||
tR(FUSE) | FUSE Output Rise Time | CL = 1 nF, VCC = 9 V to 25 V, VOH(FUSE) = 0 V to 5 V | 5 | 20 | μs | |
ZO(FUSE) | FUSE Output Impedance | 2 | 5 | kΩ |
PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|---|
CIN | Input capacitance | 5 | pF | |||
ILKG | Input leakage current | 1 | μA | |||
IOL | Low-level output current | VOL = 0.4 V, 3 mA setting |
2.5 | 3.5 | 4.5 | mA |
VOL = 0.4 V, 4 mA setting |
3.0 | 4.5 | 6.0 | |||
VOL = 0.4 V, 5 mA setting |
3.5 | 5.5 | 7.5 | |||
ILEDx | Current matching between LEDx | 0.1 | mA |
PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT |
---|---|---|---|---|---|
Input voltage range | SRP – SRN | –0.20 | 0.25 | V | |
Conversion time | Single conversion | 250 | ms | ||
Resolution (no missing codes) | 16 | Bits | |||
Effective resolution | Single conversion, signed | 15 | Bits | ||
Offset error | Post calibrated | 10 | µV | ||
Offset error drift | 0.3 | 0.5 | µV/°C | ||
Full-scale error | –0.8% | 0.2% | 0.8% | ||
Full-scale error drift | 150 | PPM/°C | |||
Effective input resistance | 2.5 | mΩ |
PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|---|
VIN | Input voltage range | VC4 – VC3, VC3 – VC2, VC2 – VC1, VC1 – VSS | –0.20 | 8 | V | |
Conversion time | Single conversion | 32 | ms | |||
Resolution (no missing codes) | 16 | Bits | ||||
Effective resolution | Single conversion, signed | 15 | Bits | |||
R(BAL) | RDS(ON) for internal FET at VDS > 2 V | VDS = VC4 – VC3, VC3 – VC2, VC2 – VC1, VC1 – VSS |
200 | 310 | 430 | Ω |
RDS(ON) for internal FET at VDS > 4 V | VDS = VC4 – VC3, VC3 – VC2, VC2 – VC1, VC1 – VSS |
60 | 125 | 230 |
PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|---|
R | Internal Pull Up Resistor | 16.5 | 17.5 | 19.0 | KΩ | |
RDRIFT | Internal Pull Up Resistor Drift From 25°C | 200 | PPM/°C | |||
RPAD | Internal Pin Pad resistance | 84 | Ω | |||
VIN | Input voltage range | TS1 – VSS, TS2 – VSS | –0.20 | 0.8 × VREG25 | V | |
Conversion Time | 16 | ms | ||||
Resolution (no missing codes) | 16 | Bits | ||||
Effective resolution | 11 | 12 | Bits |
PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|---|
V(TEMP) | Temperature sensor voltage | –1.9 | –2.0 | –2.1 | mV/°C | |
Conversion Time | 16 | ms | ||||
Resolution (no missing codes) | 16 | Bits | ||||
Effective resolution | 11 | 12 | Bits |
PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|---|
TMAX1 | Maximum PCHG temperature | 110 | 150 | °C | ||
TMAX2 | Maximum REG33 temperature | 125 | 175 | °C | ||
TRECOVER | Recovery hysteresis temperature | 10 | °C | |||
tPROTECT | Protection time | 5 | µs |
PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|---|
f(OSC) | Operating frequency of CPU Clock | 4.194 | MHz | |||
f(EIO) | Frequency error(1)(2) | TA = –20°C to 70°C | –2% | ±0.25% | 2% | |
TA = –40°C to 85°C | –3% | ±0.25% | 3% | |||
t(SXO) | Start-up time(3) | TA = –25°C to 85°C | 3 | 6 | ms |
PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|---|
f(LOSC) | Operating frequency | 32.768 | kHz | |||
f(LEIO) | Frequency error(1)(3) | TA = –20°C to 70°C | –1.5% | ±0.25% | 1.5% | |
TA = –40°C to 85°C | –2.5% | ±0.25% | 2.5% | |||
t(LSXO) | Start-up time(2) | TA = –25°C to 85°C | 100 | μs |
PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|---|
VREF | Internal Reference Voltage | 1.215 | 1.225 | 1.230 | V | |
VREF_DRIFT | Internal Reference Voltage Drift | TA = –25°C to 85°C | ±80 | PPM/°C | ||
TA = 0°C to 60°C | ±50 |
PARAMETER(1) | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|---|
Data retention | 10 | Year | ||||
Flash programming write-cycles | Data Flash | 20k | Cycle | |||
Instruction Flash | 1k | |||||
ICC(PROG_DF) | Data Flash-write supply current | TA = –40°C to 85°C | 3 | 4 | mA | |
ICC(ERASE_DF) | Data Flash-erase supply current | TA = –40°C to 85°C | 3 | 18 | mA |
PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|---|
V(OCD) | OCD detection threshold voltage range, typical | RSNS = 0 | 50 | 200 | mV | |
RSNS = 1 | 25 | 100 | ||||
ΔV(OCDT) | OCD detection threshold voltage program step | RSNS = 0 | 10 | mV | ||
RSNS = 1 | 5 | |||||
V(OFFSET) | OCD offset | –10 | 10 | mV | ||
V(Scale_Err) | OCD scale error | –10% | 10% | |||
t(OCDD) | Over Current in Discharge Delay | 1 | 31 | ms | ||
t(OCDD_STEP) | OCDD Step options | 2 | ms | |||
t(DETECT) | Current fault detect time | VSRP – SRN = VTHRESH + 12.5 mV | 160 | µs | ||
tACC | Over Current and Short Circuit delay time accuracy | Accuracy of typical delay time | –20% | 20% |
PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|---|
V(SDC1) | SCD1 detection threshold voltage range, typical | RSNS = 0 | 100 | 450 | mV | |
RSNS = 1 | 50 | 225 | ||||
ΔV(SCD1T) | SCD1 detection threshold voltage program step | RSNS = 0 | 50 | mV | ||
RSNS = 1 | 25 | |||||
V(OFFSET) | SCD1 offset | –10 | 10 | mV | ||
V(Scale_Err) | SCD1 scale error | –10% | 10% | |||
t(SCD1D) | Short Circuit in Discharge Delay | AFE.STATE_CNTL[SCDDx2] = 0 | 0 | 915 | µs | |
AFE.STATE_CNTL[SCDDx2] = 1 | 0 | 1830 | ||||
t(SCD1D_STEP) | SCD1D Step options | AFE.STATE_CNTL[SCDDx2] = 0 | 61 | µs | ||
AFE.STATE_CNTL[SCDDx2] = 1 | 122 | |||||
t(DETECT) | Current fault detect time | VSRP – SRN = VTHRESH + 12.5 mV | 160 | µs | ||
tACC | Over Current and Short Circuit delay time accuracy | Accuracy of typical delay time | –20% | 20% |
PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|---|
V(SDC2) | SCD2 detection threshold voltage range, typical | RSNS = 0 | 100 | 450 | mV | |
RSNS = 1 | 50 | 225 | ||||
ΔV(SCD2T) | SCD2 detection threshold voltage program step | RSNS = 0 | 50 | mV | ||
RSNS = 1 | 25 | |||||
V(OFFSET) | SCD2 offset | –10 | 10 | mV | ||
V(Scale_Err) | SCD2 scale error | –10% | 10% | |||
t(SCD1D) | Short Circuit in Discharge Delay | AFE.STATE_CNTL[SCDDx2] = 0 | 0 | 458 | µs | |
AFE.STATE_CNTL[SCDDx2] = 1 | 0 | 915 | ||||
t(SCD2D_STEP) | SCD2D Step options | AFE.STATE_CNTL[SCDDx2] = 0 | 30.5 | µs | ||
AFE.STATE_CNTL[SCDDx2] = 1 | 61 | |||||
t(DETECT) | Current fault detect time | VSRP – SRN = VTHRESH + 12.5 mV | 160 | µs | ||
tACC | Over Current and Short Circuit delay time accuracy | Accuracy of typical delay time | –20% | 20% |
PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|---|
V(SCCT) | SCC detection threshold voltage range, typical | RSNS = 0 | –100 | –300 | mV | |
RSNS = 1 | –50 | –225 | ||||
ΔV(SCCDT) | SCC detection threshold voltage program step | RSNS = 0 | –50 | mV | ||
RSNS = 1 | –25 | |||||
V(OFFSET) | SCC offset | –10 | 10 | mV | ||
V(Scale_Err) | SCC scale error | –10% | 10% | |||
t(SCCD) | Short Circuit in Charge Delay | 0 | 915 | ms | ||
t(SCCD_STEP) | SCCD Step options | 61 | ms | |||
t(DETECT) | Current fault detect time | VSRP – SRN = VTHRESH + 12.5 mV | 160 | µs | ||
tACC | Over Current and Short Circuit delay time accuracy | Accuracy of typical delay time | –20% | 20% |
PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|---|
fSMB | SMBus operating frequency | Slave mode, SMBC 50% duty cycle | 10 | 100 | kHz | |
fMAS | SMBus master clock frequency | Master mode, no clock low slave extend | 51.2 | kHz | ||
tBUF | Bus free time between start and stop | 4.7 | µs | |||
tHD:STA | Hold time after (repeated) start | 4.0 | µs | |||
tSU:STA | Repeated start setup time | 4.7 | µs | |||
tSU:STO | Stop setup time | 4.0 | µs | |||
tHD:DAT | Data hold time | 300 | ns | |||
tSU:DAT | Data setup time | 250 | ns | |||
tTIMEOUT | Error signal/detect | See(1) | 25 | 35 | ms | |
tLOW | Clock low period | 4.7 | µs | |||
tHIGH | Clock high period | See(2) | Disabled | |||
tHIGH | Clock high period | See(2) | 4.0 | 50 | µs | |
tLOW:SEXT | Cumulative clock low slave extend time | See(3) | 25 | ms | ||
tLOW:MEXT | Cumulative clock low master extend time | See(4) | 10 | ms | ||
tF | Clock/data fall time | See(5) | 300 | ns | ||
tR | Clock/data rise time | See(6) | 1000 | ns |
The bq3050 measures the voltage, temperature, and current to determine battery capacity and state-of-charge (SOC). The bq3050 monitors charge and discharge activity by sensing the voltage across a small value resistor (5 mΩ to 20 mΩ, typical) between the SRP and SRN pins and in series with the battery. By integrating charge passing through the battery, the battery’s SOC is adjusted during battery charge or discharge. Measurements of OCV and charge integration determine chemical SOC.
The Qmax values are taken from a cell manufacturers' data sheet multiplied by the number of parallel cells, and is also used for the value in Design Capacity. It uses the OCV and Qmax value to determine StateOfCharge() on battery insertion, device reset, or on command. The FullChargeCapacity() is reported as the learned capacity available from full charge until Voltage() reaches the EDV0 threshold. As Voltage() falls below the Shutdown Voltage for Shutdown Time and has been out of SHUTDOWN mode for at least Shutdown Time, the PF Flags1 () [VSHUT] bit is set. For additional details, see bq3050 Technical Reference Manual (SLUU485).
Fuel gauging is derived from the Compensated End of Discharge Voltage (CEDV) method, which uses a mathematical model to correlate remaining state of charge (RSOC) and voltage near to the end of discharge state. This requires a full-discharge cycle for a single-point FCC update. The implementation models cell voltage (OCV) as a function of battery SOC, temperature, and current. The impedance is also a function of SOC and temperature, which can be satisfied by using seven parameters: EMF, C0, R0, T0, R1, TC, and C1.
The bq3050 supports a wide range of battery and system protection features that can easily be configured. The primary safety features include:
The secondary safety features of the bq3050 can be used to indicate more serious faults via the FUSE pin. This pin can be used to blow an in-line fuse to permanently disable the battery pack from charging or discharging. The secondary safety protection features include:
The bq3050 charge control features include:
The bq3050 uses the CEDV algorithm to measure and calculate the available capacity in battery cells. The bq3050 accumulates a measure of charge and discharge currents and compensates the charge current measurement for the temperature and state-of-charge of the battery. The bq3050 estimates self-discharge of the battery and also adjusts the self-discharge estimation based on temperature. See the bq3050 Technical Reference Manual (SLUU485) for further details.
The bq3050 offers limited lifetime data logging for the following critical battery parameters:
The bq3050 supports three power modes to reduce power consumption:
The bq3050 fully integrates the system oscillators and does not require any external components to support this feature.
The bq3050 checks the PRES pin periodically (1 s). If PRES input is pulled to ground by the external system, the bq3050 detects this as system present.
In a 2-cell configuration, VC1 is shorted to VC2 and VC3. In a 3-cell configuration, VC1 is shorted to VC2.
The device supports cell balancing by bypassing the current of each cell during charging or at rest. If the device's internal bypass is used, up to 10 mA can be bypassed and multiple cells can be bypassed at the same time. Higher cell balance current can be achieved by using an external cell balancing circuit. In external cell balancing mode, only one cell at a time can be balanced.
The cell balancing algorithm determines the amount of charge needed to be bypassed to balance the capacity of all cells.
When internal cell balancing is configured, the cell balance current is defined by the external resistor RVC at the VCx input. See Figure 4.
When external cell balancing is configured, the cell balance current is defined by RB. See Figure 5. Only one cell at a time can be balanced.
The bq3050 uses an integrating delta-sigma analog-to-digital converter (ADC) for current measurement, and a second delta-sigma ADC for individual cell and battery voltage and temperature measurement.
The integrating delta-sigma ADC measures the charge/discharge flow of the battery by measuring the voltage drop across a small-value sense resistor between the SR1 and SR2 pins. The integrating ADC measures bipolar signals from –0.25 V to 0.25 V. The bq3050 detects charge activity when VSR = V(SRP) – V(SRN) is positive, and discharge activity when VSR = V(SRP) – V(SRN) is negative. The bq3050 continuously integrates the signal over time, using an internal counter. The fundamental rate of the counter is 0.65 nVh.
The bq3050 updates the individual series cell voltages at 0.25-second intervals. The internal ADC of the bq3050 measures the voltage, and scales and calibrates it appropriately. This data is also used to calculate the impedance of the cell for the CEDV gas-gauging.
The bq3050 uses the SRP and SRN inputs to measure and calculate the battery charge and discharge current using a 5-mΩ to 20-mΩ typ. sense resistor.
The bq3050 provides an auto-calibration feature to cancel the voltage offset error across SRN and SRP for maximum charge measurement accuracy. The bq3050 performs auto-calibration when the SMBus lines stay low continuously for a minimum of 5 s.
The bq3050 has an internal temperature sensor and inputs for two external temperature sensors. All three temperature sensor options are individually enabled and configured for cell or FET temperature. Two configurable thermistor models are provided to allow the monitoring of cell temperature in addition to FET temperature, which may be of a higher temperature type.
The bq3050 uses SMBus v1.1 with Master Mode and packet error checking (PEC) options per the SBS specification.
The bq3050 detects an SMBus off state when SMBC and SMBD are low for two or more seconds. Clearing this state requires that either SMBC or SMBD transition high. The communication bus will resume activity within 1 ms.
See the bq3050 Technical Reference Manual(SLUU485) for further details.