SLUSCM6E June   2016  – April 2019 BQ35100

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
    1.     Device Images
      1.      Simplified Schematic
  4. Revision History
  5. Pin Configuration and Functions
    1.     Pin Functions
  6. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  Recommended Operating Conditions
    4. 6.4  Thermal Information
    5. 6.5  Power Supply Current Static Modes
    6. 6.6  Digital Input and Outputs
    7. 6.7  Power-On Reset
    8. 6.8  LDO Regulator
    9. 6.9  Internal Temperature Sensor
    10. 6.10 Internal Clock Oscillators
    11. 6.11 Integrating ADC (Coulomb Counter)
    12. 6.12 ADC (Temperature and Voltage Measurements)
    13. 6.13 Data Flash Memory
    14. 6.14 I2C-Compatible Interface Timing Characteristics
    15. 6.15 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Basic Measurement Systems
        1. 7.3.1.1 Voltage
        2. 7.3.1.2 Temperature
        3. 7.3.1.3 Coulombs
        4. 7.3.1.4 Current
      2. 7.3.2 Battery Gauging
        1. 7.3.2.1 ACCUMULATOR (ACC) Mode
        2. 7.3.2.2 STATE-OF-HEALTH (SOH) Mode
          1. 7.3.2.2.1 Low State-of-Health Alert
        3. 7.3.2.3 END-OF-SERVICE (EOS) Mode
          1. 7.3.2.3.1 Initial EOS Learning
            1. 7.3.2.3.1.1 End-Of-Service Detection
      3. 7.3.3 Power Control
      4. 7.3.4 Battery Condition Warnings
        1. 7.3.4.1 Battery Low Warning
        2. 7.3.4.2 Temperature Low Warning
        3. 7.3.4.3 Temperature High Warning
        4. 7.3.4.4 Battery Low SOH Warning
        5. 7.3.4.5 Battery EOS OCV BAD Warning
      5. 7.3.5 ALERT Signal
      6. 7.3.6 Lifetime Data Collection
      7. 7.3.7 SHA-1 Authentication
      8. 7.3.8 Data Commands
        1. 7.3.8.1 Command Summary
        2. 7.3.8.2 0x00, 0x01 AltManufacturerAccess() and 0x3E, 0x3F AltManufacturerAccess()
        3. 7.3.8.3 Control(): 0x00/0x01
      9. 7.3.9 Communications
        1. 7.3.9.1 I2C Interface
    4. 7.4 Device Functional Modes
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Applications
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 Preparation for Gauging
        2. 8.2.2.2 Gauging Mode Selection
          1. 8.2.2.2.1 ACCUMULATOR Mode
            1. 8.2.2.2.1.1 STATE-OF-HEALTH (Voltage Correlation) Mode
            2. 8.2.2.2.1.2 END-OF-SERVICE (Resistance Correlation) Mode
        3. 8.2.2.3 Voltage Measurement Selection
        4. 8.2.2.4 Temperature Measurement Selection
        5. 8.2.2.5 Current Sense Resistor Selection
        6. 8.2.2.6 Expected Device Usage Profiles
        7. 8.2.2.7 Using the BQ35100 Fuel Gauge with a Battery and Capacitor in Parallel
          1. 8.2.2.7.1 ACCUMULATOR Mode
          2. 8.2.2.7.2 STATE-OF-HEALTH Mode
          3. 8.2.2.7.3 END-OF-SERVICE Mode
      3. 8.2.3 EOS Mode Load Pulse Synchronization
      4. 8.2.4 Benefits of the BQ35100 Gauge Compared to Alternative Monitoring Techniques
      5. 8.2.5 Application Curves
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
      1. 10.1.1 Introduction
      2. 10.1.2 Power Supply Decoupling Capacitor
      3. 10.1.3 Capacitors
      4. 10.1.4 Communication Line Protection Components
    2. 10.2 Layout Example
      1. 10.2.1 Ground System
      2. 10.2.2 Kelvin Connections
      3. 10.2.3 Board Offset Considerations
    3. 10.3 ESD Spark Gap
  11. 11Device and Documentation Support
    1. 11.1 Documentation Support
      1. 11.1.1 Related Documentation
    2. 11.2 Receiving Notification of Documentation Updates
    3. 11.3 Community Resources
    4. 11.4 Trademarks
    5. 11.5 Electrostatic Discharge Caution
    6. 11.6 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Description

The BQ35100 Battery Fuel Gauge and End-Of-Service Monitor provides highly configurable fuel gauging for non-rechargeable (primary) lithium batteries without requiring a forced discharge of the battery. Built so that optimization is not necessary to achieve accurate gauging, the BQ35100 device uses patented TI gauging algorithms to support the option to seamlessly replace an old battery with a new one.

The BQ35100 device provides accurate results with ultra-low average power consumption where less than 2 µA can be achieved through host control via the GAUGE ENABLE (GE) pin. The device is only required to be powered long enough, at a system-determined update frequency, to gather data and to make calculations to support the selected algorithm. A typical system may need to only be updated once every 8 hours as the gauge is not required to be powered to measure all discharge activity.

The fuel gauging functions use voltage, current, and temperature measurements to provide state-of-health (SOH) data and end-of-service (EOS) warning information where the host can read the gathered data through a 400-kHz I2C bus. An ALERT output, based on a variety of configurable status and data options, is also available to interrupt the host.

Device Information(1)

PART NUMBER PACKAGE BODY SIZE (NOM)
BQ35100 TSSOP (14) 5.00 mm × 4.40 mm
  1. For all available packages, see the orderable addendum at the end of the data sheet.