SLUSE96 November   2023 BQ76907

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  Recommended Operating Conditions
    4. 6.4  Thermal Information bq76907
    5. 6.5  Supply Current
    6. 6.6  Digital I/O
    7. 6.7  REGOUT LDO
    8. 6.8  Voltage References
    9. 6.9  Coulomb Counter
    10. 6.10 Coulomb Counter Digital Filter
    11. 6.11 Current Wake Detector
    12. 6.12 Analog-to-Digital Converter
    13. 6.13 Cell Balancing
    14. 6.14 Internal Temperature Sensor
    15. 6.15 Thermistor Measurement
    16. 6.16 Hardware Overtemperature Detector
    17. 6.17 Internal Oscillator
    18. 6.18 Charge and Discharge FET Drivers
    19. 6.19 Comparator-Based Protection Subsystem
    20. 6.20 Timing Requirements - I2C Interface, 100kHz Mode
    21. 6.21 Timing Requirements - I2C Interface, 400kHz Mode
    22. 6.22 Timing Diagram
    23. 6.23 Typical Characteristics
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Device Configuration
      1. 7.3.1 Commands and Subcommands
      2. 7.3.2 Configuration Using OTP or Registers
      3. 7.3.3 Device Security
    4. 7.4 Device Hardware Features
      1. 7.4.1  Voltage ADC
      2. 7.4.2  Coulomb Counter and Digital Filters
      3. 7.4.3  Protection FET Drivers
      4. 7.4.4  Voltage References
      5. 7.4.5  Multiplexer
      6. 7.4.6  LDOs
      7. 7.4.7  Standalone Versus Host Interface
      8. 7.4.8  ALERT Pin Operation
      9. 7.4.9  Low Frequency Oscillator
      10. 7.4.10 I2C Serial Communications Interface
    5. 7.5 Measurement Subsystem
      1. 7.5.1 Voltage Measurement
        1. 7.5.1.1 Voltage ADC Scheduling
        2. 7.5.1.2 Unused VC Pins
        3. 7.5.1.3 General Purpose ADCIN Functionality
      2. 7.5.2 Current Measurement and Charge Integration
      3. 7.5.3 Internal Temperature Measurement
      4. 7.5.4 Thermistor Temperature Measurement
      5. 7.5.5 Factory Trim and Calibration
    6. 7.6 Protection Subsystem
      1. 7.6.1 Protections Overview
      2. 7.6.2 Primary Protections
      3. 7.6.3 CHG Detector
      4. 7.6.4 Cell Open-Wire Protection
      5. 7.6.5 Diagnostic Checks
    7. 7.7 Cell Balancing
    8. 7.8 Device Operational Modes
      1. 7.8.1 Overview of Operational Modes
      2. 7.8.2 NORMAL Mode
      3. 7.8.3 SLEEP Mode
      4. 7.8.4 DEEPSLEEP Mode
      5. 7.8.5 SHUTDOWN Mode
      6. 7.8.6 CONFIG_UPDATE Mode
  9. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
      3. 8.2.3 Application Performance Plot
      4. 8.2.4 Random Cell Connection Support
      5. 8.2.5 Startup Timing
      6. 8.2.6 FET Driver Turn-Off
      7. 8.2.7 Usage of Unused Pins
  10. Power Supply Recommendations
  11. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  12. 11Device and Documentation Support
    1. 11.1 Documentation Support
      1. 11.1.1 Related Documentation
    2. 11.2 Receiving Notification of Documentation Updates
    3. 11.3 Support Resources
    4. 11.4 Trademarks
    5. 11.5 Electrostatic Discharge Caution
    6. 11.6 Glossary
  13. 12Revision History
  14. 13Introduction to Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Diagnostic Checks

The BQ76907 includes several measurements and checks for diagnostic purposes. Some of these will trigger a protection fault, but they generally do not include an alert phase with programmable delay period, they will immediately trigger a fault when they are detected. They are not all autonomously recoverable, but some can be manually recovered using a subcommand sent by the host. For more detail on each diagnostic, see the BQ76907 Technical Reference Manual.

VREF1 vs VREF2 Check—The device performs a regular comparison of the two internal voltage references and can trigger a fault if the result is outside an acceptable range. This is implemented using a measurement of the internal 1.8-V LDO voltage (which is based on VREF2) with the ADC using VREF1 for its reference.

VSS Check—The device also includes a regular measurement of the VSS voltage as part of the measurement loop, comparing the resulting value to the expected value, in order to implement the VSSF diagnostic protection.

Stack Check—The device includes a regular measurement of the top-of-stack (TOS) voltage as part of the measurement loop. This measurement can be used by the host to compare with the sum of the individual differential cell voltage measurements, with a significant difference possibly indicating some type of malfunction.

REGOUT Check—The REGOUT LDO generates a flag if an error is detected, such as the regulator is in short circuit current limit. When detected, the device triggers the REGOUT Diagnostic Fault and can disable FETs based on settings.

LFO Integrity Check—The device integrates a special hardware block that monitors if the LFO stops oscillating or drops significantly in frequency versus its expected value. If this is detected, the device immediately transitions into SHUTDOWN mode.

Internal Factory Trim Check—The device includes a check of the digital trim and setting information within the device at initial power up or after any full reset. If an error is detected during this check, the device will immediately transition to SHUTDOWN mode.

Hardware Overtemperature Detector—The device integrates a hardware overtemperature detection circuit, which determines when the die temperature passes an excessive temperature of approximately 120°C. If this detector triggers, the device will automatically begin the sequence to enter SHUTDOWN, based on the configuration setting.