SWRS256 March   2022 CC1311R3

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Functional Block Diagram
  5. Revision History
  6. Device Comparison
  7. Pin Configuration and Functions
    1. 7.1 Pin Diagram – RGZ Package (Top View)
    2. 7.2 Signal Descriptions – RGZ Package
    3. 7.3 Pin Diagram – RKP Package (Top View)
    4. 7.4 Signal Descriptions – RKP Package
    5. 7.5 Connections for Unused Pins and Modules
  8. Specifications
    1. 8.1  Absolute Maximum Ratings
    2. 8.2  ESD Ratings
    3. 8.3  Recommended Operating Conditions
    4. 8.4  Power Supply and Modules
    5. 8.5  Power Consumption - Power Modes
    6. 8.6  Power Consumption - Radio Modes
    7. 8.7  Nonvolatile (Flash) Memory Characteristics
    8. 8.8  Thermal Resistance Characteristics
    9. 8.9  RF Frequency Bands
    10. 8.10 861 MHz to 1054 MHz - Receive (RX)
    11. 8.11 861 MHz to 1054 MHz - Transmit (TX) 
    12. 8.12 861 MHz to 1054 MHz - PLL Phase Noise Wideband Mode
    13. 8.13 861 MHz to 1054 MHz - PLL Phase Noise Narrowband Mode
    14. 8.14 359 MHz to 527 MHz - Receive (RX)
    15. 8.15 359 MHz to 527 MHz - Transmit (TX) 
    16. 8.16 359 MHz to 527 MHz - PLL Phase Noise
    17. 8.17 Timing and Switching Characteristics
      1. 8.17.1 Reset Timing
      2. 8.17.2 Wakeup Timing
      3. 8.17.3 Clock Specifications
        1. 8.17.3.1 48 MHz Crystal Oscillator (XOSC_HF)
        2. 8.17.3.2 48 MHz RC Oscillator (RCOSC_HF)
        3. 8.17.3.3 32.768 kHz Crystal Oscillator (XOSC_LF)
        4. 8.17.3.4 32 kHz RC Oscillator (RCOSC_LF)
      4. 8.17.4 Synchronous Serial Interface (SSI) Characteristics
        1. 8.17.4.1 Synchronous Serial Interface (SSI) Characteristics
        2.       40
      5. 8.17.5 UART
        1. 8.17.5.1 UART Characteristics
    18. 8.18 Peripheral Characteristics
      1. 8.18.1 ADC
        1. 8.18.1.1 Analog-to-Digital Converter (ADC) Characteristics
      2. 8.18.2 DAC
        1. 8.18.2.1 Digital-to-Analog Converter (DAC) Characteristics
      3. 8.18.3 Temperature and Battery Monitor
        1. 8.18.3.1 Temperature Sensor
        2. 8.18.3.2 Battery Monitor
      4. 8.18.4 Comparator
        1. 8.18.4.1 Continuous Time Comparator
      5. 8.18.5 GPIO
        1. 8.18.5.1 GPIO DC Characteristics
    19. 8.19 Typical Characteristics
      1. 8.19.1 MCU Current
      2. 8.19.2 RX Current
      3. 8.19.3 TX Current
      4. 8.19.4 RX Performance
      5. 8.19.5 TX Performance
      6. 8.19.6 ADC Performance
  9. Detailed Description
    1. 9.1  Overview
    2. 9.2  System CPU
    3. 9.3  Radio (RF Core)
      1. 9.3.1 Proprietary Radio Formats
    4. 9.4  Memory
    5. 9.5  Cryptography
    6. 9.6  Timers
    7. 9.7  Serial Peripherals and I/O
    8. 9.8  Battery and Temperature Monitor
    9. 9.9  µDMA
    10. 9.10 Debug
    11. 9.11 Power Management
    12. 9.12 Clock Systems
    13. 9.13 Network Processor
  10. 10Application, Implementation, and Layout
    1. 10.1 Reference Designs
    2. 10.2 Junction Temperature Calculation
  11. 11Device and Documentation Support
    1. 11.1 Device Nomenclature
    2. 11.2 Tools and Software
      1. 11.2.1 SimpleLink™ Microcontroller Platform
    3. 11.3 Documentation Support
    4. 11.4 Support Resources
    5. 11.5 Trademarks
    6. 11.6 Electrostatic Discharge Caution
    7. 11.7 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • RGZ|48
  • RKP|40
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Description

The SimpleLink™CC1311R3 device is a multiprotocol Sub-1 GHz wireless microcontroller (MCU) supporting IEEE 802.15.4g, IPv6-enabled smart objects (6LoWPAN), mioty, proprietary systems, including the TI 15.4-Stack (Sub-1 GHz). The CC1311R3 is based on an Arm® Cortex® M4 main processor and optimized for low-power wireless communication and advanced sensing in grid infrastructure, building automation, retail automation, personal electronics and medical applications.

The CC1311R3 has a software defined radio powered by an Arm® Cortex® M0, which allows support for multiple physical layers and RF standards. The device supports operation in 143 to 176-MHz, 287 to 351-MHz, 359 to 527-MHz, 861 to 1054-MHz, and 1076 to 1315-MHz frequency bands. The CC1311R3 has an efficient built-in PA that supports +14 dBm TX at 24.9 mA current consumption. In RX it has -121 dBm sensitivity and 88 dB blocking ±10 MHz in SimpleLink™ long-range mode with 2.5-kbps data rate.

The CC1311R3 has a low sleep current of 0.7 μA with RTC and 32KB RAM retention.

Consistent with many customers’ 10 to 15 years or longer life cycle requirements, TI has a product life cycle policy with a commitment to product longevity and continuity of supply.

The CC1311R3 device is part of the SimpleLink™ MCU platform, which consists of Wi-Fi®, Bluetooth® Low Energy, Thread, Zigbee, Wi-SUN®, Amazon Sidewalk, mioty, Sub-1 GHz MCUs, and host MCUs. CC1311R3 is part of a scalable portfolio with flash sizes from 32KB to 704KB with pin-to-pin compatible package options. The common SimpleLink™CC13xx and CC26xx Software Development Kit (SDK) and SysConfig system configuration tool supports migration between devices in the portfolio. A comprehensive number of software stacks, application examples and SimpleLink™ Academy training sessions are included in the SDK. For more information, visit wireless connectivity.

Device Information
PART NUMBER(1) PACKAGE BODY SIZE (NOM)
CC1311R31T0RGZR VQFN (48) 7.00 mm × 7.00 mm
CC1311R31T0RKPR VQFN (40) 5.00 mm × 5.00 mm
For the most current part, package, and ordering information for all available devices, see the Package Option Addendum in Section 12, or see the TI website.