SWRS229D january   2020  – july 2023 CC2642R-Q1

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Functional Block Diagram
  6. Revision History
  7. Device Comparison
  8. Terminal Configuration and Functions
    1. 7.1 Pin Diagram – RTC and RGZ Package (Top View)
    2. 7.2 Signal Descriptions
    3. 7.3 Connections for Unused Pins and Modules
  9. Specifications
    1. 8.1  Absolute Maximum Ratings
    2. 8.2  ESD Ratings
    3. 8.3  Recommended Operating Conditions
    4. 8.4  Power Supply and Modules
    5. 8.5  Power Consumption - Power Modes
    6. 8.6  Power Consumption - Radio Modes
    7. 8.7  Nonvolatile (Flash) Memory Characteristics
    8. 8.8  Thermal Resistance Characteristics
    9. 8.9  Bluetooth Low Energy Receive (RX)
    10. 8.10 Bluetooth Low Energy - Transmit (TX)
    11. 8.11 Timing and Switching Characteristics
      1. 8.11.1 Reset Timing
      2. 8.11.2 Wakeup Timing
      3. 8.11.3 Clock Specifications
        1. 8.11.3.1 48 MHz Crystal Oscillator (XOSC_HF)
        2. 8.11.3.2 48 MHz RC Oscillator (RCOSC_HF)
        3. 8.11.3.3 2 MHz RC Oscillator (RCOSC_MF)
        4. 8.11.3.4 32.768 kHz Crystal Oscillator (XOSC_LF)
        5. 8.11.3.5 32 kHz RC Oscillator (RCOSC_LF)
      4. 8.11.4 Synchronous Serial Interface (SSI) Characteristics
        1. 8.11.4.1 Synchronous Serial Interface (SSI) Characteristics
        2.       34
      5. 8.11.5 UART
        1. 8.11.5.1 UART Characteristics
    12. 8.12 Peripheral Characteristics
      1. 8.12.1 ADC
        1.       Analog-to-Digital Converter (ADC) Characteristics
      2. 8.12.2 DAC
        1. 8.12.2.1 Digital-to-Analog Converter (DAC) Characteristics
      3. 8.12.3 Temperature and Battery Monitor
        1. 8.12.3.1 Temperature Sensor
        2. 8.12.3.2 Battery Monitor
      4. 8.12.4 Comparators
        1. 8.12.4.1 Continuous Time Comparator
        2. 8.12.4.2 Low-Power Clocked Comparator
      5. 8.12.5 Current Source
        1. 8.12.5.1 Programmable Current Source
      6. 8.12.6 GPIO
        1. 8.12.6.1 GPIO DC Characteristics
    13. 8.13 Typical Characteristics
      1. 8.13.1 MCU Current
      2. 8.13.2 RX Current
      3. 8.13.3 TX Current
      4. 8.13.4 RX Performance
      5. 8.13.5 TX Performance
      6. 8.13.6 ADC Performance
  10. Detailed Description
    1. 9.1  Overview
    2. 9.2  System CPU
    3. 9.3  Radio (RF Core)
      1. 9.3.1 Bluetooth 5 low energy
    4. 9.4  Memory
    5. 9.5  Sensor Controller
    6. 9.6  Cryptography
    7. 9.7  Timers
    8. 9.8  Serial Peripherals and I/O
    9. 9.9  Battery and Temperature Monitor
    10. 9.10 µDMA
    11. 9.11 Debug
    12. 9.12 Power Management
    13. 9.13 Clock Systems
    14. 9.14 Network Processor
  11. 10Application, Implementation, and Layout
    1. 10.1 Reference Designs
    2. 10.2 Junction Temperature Calculation
  12. 11Device and Documentation Support
    1. 11.1 Device Nomenclature
    2. 11.2 Tools and Software
      1. 11.2.1 SimpleLink™ Microcontroller Platform
    3. 11.3 Documentation Support
    4. 11.4 Support Resources
    5. 11.5 Trademarks
    6. 11.6 Electrostatic Discharge Caution
    7. 11.7 Glossary
  13. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Bluetooth 5 low energy

The RF Core offers full support for Bluetooth 5 low energy, including the high-speed 2-Mbps physical layer and the 500-kbps and 125-kbps long range PHYs (Coded PHY) through the TI provided Bluetooth 5 stack or through a high-level Bluetooth API. The Bluetooth 5 PHY and part of the controller are in radio and system ROM, providing significant savings in memory usage and more space available for applications.

The new high-speed mode allows data transfers up to 2 Mbps, twice the speed of Bluetooth 4.2 and five times the speed of Bluetooth 4.0, without increasing power consumption. In addition to faster speeds, this mode offers significant improvements for energy efficiency and wireless coexistence with reduced radio communication time.

Bluetooth 5 also enables unparalleled flexibility for adjustment of speed and range based on application needs, which capitalizes on the high-speed or long-range modes respectively. Data transfers are now possible at 2 Mbps, enabling development of applications using voice, audio, imaging, and data logging that were not previously an option using Bluetooth low energy. With high-speed mode, existing applications deliver faster responses, richer engagement, and longer battery life. Bluetooth 5 enables fast, reliable firmware updates.