SWRS187D August   2016  – July 2019 CC2650MODA

PRODUCTION DATA.  

  1. Device Overview
    1. 1.1 Features
    2. 1.2 Applications
    3. 1.3 Description
    4. 1.4 Functional Block Diagram
  2. Revision History
  3. Device Comparison
    1. 3.1 Related Products
  4. Terminal Configuration and Functions
    1. 4.1 Module Pin Diagram
    2. 4.2 Pin Functions
  5. Specifications
    1. 5.1  Absolute Maximum Ratings
    2. 5.2  ESD Ratings
    3. 5.3  Recommended Operating Conditions
    4. 5.4  Power Consumption Summary
    5. 5.5  General Characteristics
    6. 5.6  Antenna
    7. 5.7  1-Mbps GFSK (Bluetooth low energy) – RX
    8. 5.8  1-Mbps GFSK (Bluetooth low energy) – TX
    9. 5.9  IEEE 802.15.4 (Offset Q-PSK DSSS, 250 kbps) – RX
    10. 5.10 IEEE 802.15.4 (Offset Q-PSK DSSS, 250 kbps) – TX
    11. 5.11 24-MHz Crystal Oscillator (XOSC_HF)
    12. 5.12 32.768-kHz Crystal Oscillator (XOSC_LF)
    13. 5.13 48-MHz RC Oscillator (RCOSC_HF)
    14. 5.14 32-kHz RC Oscillator (RCOSC_LF)
    15. 5.15 ADC Characteristics
    16. 5.16 Temperature Sensor
    17. 5.17 Battery Monitor
    18. 5.18 Continuous Time Comparator
    19. 5.19 Low-Power Clocked Comparator
    20. 5.20 Programmable Current Source
    21. 5.21 DC Characteristics
    22. 5.22 Thermal Resistance Characteristics for MOH Package
    23. 5.23 Timing Requirements
    24. 5.24 Switching Characteristics
    25. 5.25 Typical Characteristics
  6. Detailed Description
    1. 6.1  Overview
    2. 6.2  Functional Block Diagram
    3. 6.3  Main CPU
    4. 6.4  RF Core
    5. 6.5  Sensor Controller
    6. 6.6  Memory
    7. 6.7  Debug
    8. 6.8  Power Management
    9. 6.9  Clock Systems
    10. 6.10 General Peripherals and Modules
    11. 6.11 System Architecture
    12. 6.12 Certification
      1. 6.12.1 Regulatory Information Europe
      2. 6.12.2 Federal Communications Commission Statement
      3. 6.12.3 Canada, Industry Canada (IC)
      4. 6.12.4 Japan (JATE ID)
    13. 6.13 End Product Labeling
    14. 6.14 Manual Information to the End User
    15. 6.15 Module Marking
  7. Application, Implementation, and Layout
    1. 7.1 Application Information
      1. 7.1.1 Typical Application Circuit
    2. 7.2 Layout
      1. 7.2.1 Layout Guidelines
  8. Environmental Requirements and Specifications
    1. 8.1 PCB Bending
    2. 8.2 Handling Environment
      1. 8.2.1 Terminals
      2. 8.2.2 Falling
    3. 8.3 Storage Condition
      1. 8.3.1 Moisture Barrier Bag Before Opened
      2. 8.3.2 Moisture Barrier Bag Open
    4. 8.4 Baking Conditions
    5. 8.5 Soldering and Reflow Condition
  9. Device and Documentation Support
    1. 9.1  Device Nomenclature
    2. 9.2  Tools and Software
    3. 9.3  Documentation Support
    4. 9.4  Texas Instruments Low-Power RF Website
    5. 9.5  Low-Power RF eNewsletter
    6. 9.6  Community Resources
    7. 9.7  Additional Information
    8. 9.8  Trademarks
    9. 9.9  Electrostatic Discharge Caution
    10. 9.10 Export Control Notice
    11. 9.11 Glossary
  10. 10Mechanical, Packaging, and Orderable Information
    1. 10.1 Packaging Information
    2. 10.2 PACKAGE OPTION ADDENDUM
      1. 10.2.1 PACKAGING INFORMATION
    3. 10.3 PACKAGE MATERIALS INFORMATION
      1. 10.3.1 TAPE AND REEL INFORMATION

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • MOH|29
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Device Nomenclature

To designate the stages in the product development cycle, TI assigns prefixes to all part numbers and/or date-code. Each device has one of three prefixes/identifications: X, P, or null (no prefix) (for example, CC2650MODA is in production; therefore, no prefix/identification is assigned).

Device development evolutionary flow:

    XExperimental device that is not necessarily representative of the final device's electrical specifications and may not use production assembly flow.
    PPrototype device that is not necessarily the final silicon die and may not necessarily meet final electrical specifications.
    nullProduction version of the silicon die that is fully qualified.

Production devices have been characterized fully, and the quality and reliability of the device have been demonstrated fully. TI's standard warranty applies.

Predictions show that prototype devices (X or P) have a greater failure rate than the standard production devices. Texas Instruments recommends that these devices not be used in any production system because their expected end-use failure rate still is undefined. Only qualified production devices are to be used.

TI device nomenclature also includes a suffix with the device family name. This suffix indicates the package type (for example, MOH).

For orderable part numbers of CC2650MODA devices in the MOH package type, see the Package Option Addendum of this document, the TI website (www.ti.com), or contact your TI sales representative.

CC2650MODA device_nomenclature_CC2650MOD_SWRS187.gifFigure 9-1 Device Nomenclature