SCAS882E June   2009  – October 2016 CDCE62002

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Description (continued)
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 Thermal Information
    3. 7.3 Electrical Characteristics
    4. 7.4 Timing Requirements
    5. 7.5 SPI Bus Timing Characteristics
    6. 7.6 Typical Characteristics
  8. Parameter Measurement Information
  9. Detailed Description
    1. 9.1 Overview
    2. 9.2 Functional Block Diagrams
      1. 9.2.1 Interface and Control Block
      2. 9.2.2 Input Block
      3. 9.2.3 Output Block
      4. 9.2.4 Synthesizer Block
      5. 9.2.5 Computing the Output Frequency
    3. 9.3 Feature Description
      1. 9.3.1 Phase Noise Analysis
      2. 9.3.2 Output-to-Output Isolationthe OUTPUT TO OUTPUT ISOLATION section
      3. 9.3.3 Device Control
      4. 9.3.4 External Control Pins
        1. 9.3.4.1 Factory Default Programming
      5. 9.3.5 Input Block
        1. 9.3.5.1 Reference Input Buffer
        2. 9.3.5.2 Smart Multiplexer Dividers
        3. 9.3.5.3 Auxiliary Input Port
        4. 9.3.5.4 Output Block
        5. 9.3.5.5 Synthesizer Block
        6. 9.3.5.6 Input Divider
        7. 9.3.5.7 Feedback and Feedback Bypass Divider
          1. 9.3.5.7.1 VCO Select
          2. 9.3.5.7.2 Prescaler
          3. 9.3.5.7.3 Loop Filter
        8. 9.3.5.8 Internal Loop Filter Component Configuration
      6. 9.3.6 Lock Detect
      7. 9.3.7 Crystal Input Interface
      8. 9.3.8 VCO Calibration
      9. 9.3.9 Start-Up Time Estimation
    4. 9.4 Device Functional Modes
      1. 9.4.1 Clock Generator
      2. 9.4.2 SERDES Start-Up and Clock Cleaner
      3. 9.4.3 Clocking ADCS With the CDCE62002
    5. 9.5 Programming
      1. 9.5.1 Interface and Control Block
        1. 9.5.1.1 SPI (Serial Peripheral Interface)
        2. 9.5.1.2 SPI Interface Master
        3. 9.5.1.3 SPI Consecutive Read/Write Cycles to the CDCE62002
        4. 9.5.1.4 Writing to the CDCE62002
        5. 9.5.1.5 Reading from the CDCE62002
        6. 9.5.1.6 Writing to EEPROM
        7. 9.5.1.7 CDCE62002 SPI Command Structure
      2. 9.5.2 Device Configuration
    6. 9.6 Register Maps
      1. 9.6.1 Device Registers: Register 0 Address 0x00
      2. 9.6.2 Device Registers: Register 1 Address 0x01
      3. 9.6.3 Device Registers: Register 2 Address 0x02
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Receiving Notification of Documentation Updates
    2. 12.2 Community Resources
    3. 12.3 Trademarks
    4. 12.4 Electrostatic Discharge Caution
    5. 12.5 Glossary
  13. 13Mechanical, Packaging, and Orderable Information
    1. 13.1 Package

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) (1)
MIN MAX UNIT
Supply voltage VCC(2) –0.5 V
Input voltage, VI (3) –0.5 V
Output voltage, VO (3) –0.5 V
Input current (VI < 0, VI > VCC) ±20 mA
Output current for LVPECL/LVCMOS Outputs (0 < VO < VCC) ±50 mA
TJ Junction temperature 125 °C
Tstg Storage temperature –65 150 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute–maximum–rated conditions for extended periods may affect device reliability.
(2) All supply voltages have to be supplied simultaneously.
(3) The input and output negative voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

7.2 Thermal Information

THERMAL METRIC(1) CDCE62002 UNIT
QFN (RGZ)
32 PINS
RθJA Junction-to-ambient thermal resistance (JEDEC Compliant Board - 3×3 vias on pad) 0-lfm Airflow 35 °C/W
200-lfm Airflow 28.3
400-lfm Airflow 27.2
RθJP Junction-to-pad 1.13 °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

7.3 Electrical Characteristics

recommended operating conditions for the CDCE62002 Device for under the specified Industrial temperature range of –40°C to 85°C
PARAMETER TEST CONDITIONS MIN TYP(1) MAX UNIT
POWER SUPPLY
Supply voltage, VCC_OUT, VCC_PLLDIV, VCC_PLLD, VCC_IN, and VCC_AUX 3 3.3 3.6 V
Analog supply voltage, VCC_PLLA, & VCC_VCO 3 3.3 3.6 V
PLVPECL REF at 30.72 MHz, outputs are LVPECL Output 1 = 491.52 MHz
Output 2 = 245.76 MHz
In case of LVCMOS Outputs (1) = 245.76MHz
850 mW
PLVDS REF at 30.72 MHz, outputs are LVDS 750 mW
PLVCMOS REF at 30.72 MHz, outputs are LVCMOS 800 mW
POFF REF at 30.72 MHz Outputs are disabled 450 mW
PPD Device is powered down 40 mW
DIFFERENTIAL INPUT MODE (REF_IN)
Differental Input amplitude, (VIN+ – VIN–) 0.1 1.3 V
Common-mode input voltage, VIC 1.0 VCC–03 V
IIH Differential input current high (no internal termination) VI = VCC,
VCC = 3.6 V
20 μA
IIL Differential input current low (no internal termination) VI = 0 V,
VCC = 3.6 V
–20 μA
Input Capacitance on REF_IN 3 pF
CRYSTAL INPUT SPECIFICATIONS
On-chip load capacitance 8 10 pF
Equivalent Series Resistance (ESR) 50 Ω
LVCMOS INPUT MODE (SPI_CLK,SPI_MOSI,SPI_LE,PD, REF_IN)
VIL Low-level input voltage LVCMOS 0 0.3 VCC V
VIH High-level input voltage LVCMOS 0.7 VCC VCC V
VIK LVCMOS input clamp voltage VCC = 3 V, II = –18 mA –1.2 V
IIH LVCMOS input current VI = VCC, VCC = 3.6 V 20 μA
IIL LVCMOS input (Except REF_IN) VI = 0 V, VCC = 3.6 V –10 –40 μA
IIL LVCMOS input (REF_IN) VI = 0 V, VCC = 3.6 V –10 10 μA
CI Input capacitance (LVCMOS signals) VI = 0 V or VCC = 3 3 pF
SPI OUTPUT (MISO) / PLL_LOCK
IOH High-level output current VCC = 3.3 V, VO = 1.65 V –30 mA
IOL Low-level output current VCC = 3.3 V, VO = 1.65 V 33 mA
VOH High-level output voltage for LVCMOS outputs VCC = 3 V, IOH = –100 μA VCC–0.5 V
VOL Low-level output voltage for LVCMOS outputs VCC = 3 V, IOH = 100 μA 0.3 V
CO Output capacitance o MISO VCC = 3.3 V; VO = 0 V or VCC 3 pF
IOZH 3-state output current VO = VCC, VO = 0 V 5 μA
IOZL –5 μA
EEPROM
EEcyc Programming cycle of EEPROM 100 1000 Cycles
EEret Data retention 10 Years
VBB ( INPUT BUFFER INTERNAL TERMINATION VOLTAGE REFERENCE)
VBB Input termination voltage IBB = –0.2 mA, depending on the setting 1.2 1.9 V
INPUT BUFFERS INTERNAL TERMINATION RESISTORS (REF_IN)
Termination resistance Single-ended 5
PHASE DETECTOR
fCPmax Charge pump frequency 0.04 40 MHz
LVCMOS
fclk Output frequency, see Figure 7 Load = 5 pF to GND 250 MHz
VOH High-level output voltage for LVCMOS outputs VCC = min to max IOH = –100 μA VCC–0.5 V
VOL Low-level output voltage for LVCMOS outputs VCC = min to max IOL = 100 μA 0.3 V
IOH High-level output current VCC = 3.3 V VO = 1.65 V –30 mA
IOL Low-level output current VCC = 3.3 V VO = 1.65 V 33 mA
tsko Skew, output to output For Y0 to Y1 Both outputs set at 122.88 MHz,
reference = 30.72 MHz
75 ps
CO Output capacitance on Y0 to Y1 VCC = 3.3 V; VO = 0 V or VCC 5 pF
IOZH Tristate LVCMOS output current VO = VCC 5 μA
IOZL Tristate LVCMOS output current VO = 0 V -5 μA
IOPDH Power-down output current VO = VCC 25 μA
IOPDL Power-down output current VO = 0 V 5 μA
Duty cycle LVCMOS 45% 55%
tslew-rate Output rise/fall slew rate 3.6 5.2 V/ns
LVDS OUTPUT
fclk Output frequency Configuration load (see Figure 8) 0 800 MHz
|VOD| Differential output voltage RL = 100 Ω 270 550 mV
ΔVOD LVDS VOD magnitude change 50 mV
VOS Offset voltage –40°C to 85°C 1.24 V
ΔVOS VOS magnitude change 40 mV
Short-circuit Vout+ to ground VOUT = 0 27 mA
Short-cicuit Vout- to ground VOUT = 0 27 mA
tsk(o) Skew, output to output For Y0 to Y1 Both outputs set at 122.88 MHz
reference = 30.72 MHz
10 ps
CO Output capacitance on Y0 to Y1 VCC = 3.3 V; VO = 0 V or VCC 5 pF
IOPDH Power-down output current VO = VCC 25 μA
IOPDL Power-down output current VO = 0 V 5 μA
Duty cycle 45% 55%
tr / tf Rise and fall time 20% to 80% of VOPP 110 160 190 ps
LVCMOS-TO-LVDS
tskP_C Output skew between LVCMOS and LVDS outputs VCC/2 to crosspoint 1.4 1.7 2.0 ns
LVPECL OUTPUT
fclk Output frequency Configuration load (see Figure 9 and Figure 10) 0 1175 MHz
VOH LVPECL high-level output voltage Load VCC –1.1 VCC –0.88 V
VOL LVPECL low-level output voltage Load VCC –2.02 VCC –1.48 V
|VOD| Differential output voltage 510 870 mV
tsko Skew, output to output For Y0 to Y1 Both outputs set at 122.88 MHz 15 ps
CO Output capacitance on Y0 to Y1 VCC = 3.3 V; VO = 0 V or VCC 5 pF
IOPDH Power-down output current VO = VCC 25 μA
IOPDL Power-down output current VO = 0 V 5 μA
Duty cycle 45% 55%
tr / tf Rise and fall time 20% to 80% of VOPP 55 75 135 ps
LVDS-TO- LVPECL
tskP_C Output skew between LVDS and LVPECL outputs Crosspoint to Crosspoint 130 200 280 ps
LVCMOS-TO- LVPECL
tskP_C Output skew between LVCMOS and LVPECL outputs VCC/2 to Crosspoint 1.6 1.8 2.2 ns
LVPECL Hi-PERFORMANCE OUTPUT
VOH LVPECL high-level output voltage Load VCC –1.11 VCC –0.91 V
VOL LVPECL low-level output voltage Load VCC –2.06 VCC –1.84 V
|VOD| Differential output voltage 670 950 mV
tr / tf Rise and fall time 20% to 80% of VOPP 55 75 135 ps
(1) All typical values are at VCC = 3.3 V, temperature = 25°C.

7.4 Timing Requirements

over recommended ranges of supply voltage, load and operating free-air temperature range (unless otherwise noted)
PARAMETER MIN TYP MAX UNIT
REF_IN REQUIREMENTS
fREF – Diff IN-DIV Maximum clock frequency applied to reference divider when (Register 0 Bit 9 = 1) 500 MHz
fREF – Diff REF_DIV Maximum clock frequency applied to reference divider when (Register 0 Bit 9 = 0) 250 MHz
fREF– Single For single-ended Inputs ( LVCMOS) on REF_IN 250 MHz
Duty Cycle Duty cycle of REF_IN 40% 60%
INTERNAL TIMING REQUIREMENTS
fSMUX Maximum clock frequency applied to smart MUX input 250 MHz
fINDIV Maximum clock frequency applied to input divider 200 MHz
AUXILARY_IN REQUIREMENTS
fREF – Crystal AT-Cut crystal input 2 42 MHz
Drive level 0.1 mW
Maximum shunt capacitance 7 pF
PD REQUIREMENTS
tr / tf Rise and fall time of the PD signal from 20% to 80% of VCC 4 ns

7.5 SPI Bus Timing Characteristics

PARAMETER MIN TYP MAX UNIT
fClock Clock frequency for the SPI_CLK 20 MHz
t1 SPI_LE to SPI_CLK setup time 10 ns
t2 SPI_MOSI to SPI_CLK setup time 10 ns
t3 SPI_MOSI to SPI_CLK hold time 10 ns
t4 SPI_CLK high duration 25 ns
t5 SPI_CLK low duration 25 ns
t6 SPI_CLK to SPI_LE hold time 10 ns
t7 SPI_LE pulse width 20 ns
t8 SPI_CLK to MISO data valid 10 ns
t9 SPI_LE to SPI_MISO data valid 10 ns
CDCE62002 write_tim_cas882.gif Figure 1. Timing Diagram for SPI Write Command
CDCE62002 read_tim_cas882.gif Figure 2. Timing Diagram for SPI Read Command

7.6 Typical Characteristics

CDCE62002 g001_cas882.gif Figure 3. LVPECL Output Voltage Swing vs Frequency
CDCE62002 g003_cas882.gif Figure 5. LVDS Output Voltage Swing vs Frequency
CDCE62002 g002_cas882.gif Figure 4. High-Performance LVPECL Output Voltage Swing vs Frequency
CDCE62002 g004_cas882.gif Figure 6. LVCMOS Output Voltage Swing vs Frequency