SCAS945A June   2015  – September 2015 CDCEL824

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Description (continued)
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 CLK_IN Timing Requirements
    7. 7.7 SDA/SCL Timing Requirements
    8. 7.8 EEPROM Specification
    9. 7.9 Typical Characteristics
  8. Parameter Measurement Information
  9. Detailed Description
    1. 9.1 Overview
    2. 9.2 Functional Block Diagram
    3. 9.3 Feature Description
      1. 9.3.1 Control Pins Settings
      2. 9.3.2 SDA/SCL Serial Interface
      3. 9.3.3 SDA/SCL Hardware Interface
    4. 9.4 Device Functional Modes
      1. 9.4.1 Default Device Setting
    5. 9.5 Programming
      1. 9.5.1 Data Protocol
      2. 9.5.2 Command Code Definition
      3. 9.5.3 Generic Programming Sequence
      4. 9.5.4 Byte Write Programming Sequence
      5. 9.5.5 Byte Read Programming Sequence
      6. 9.5.6 Block Write Programming Sequence
      7. 9.5.7 Block Read Programming Sequence
    6. 9.6 Register Maps
      1. 9.6.1 SDA/SCL Configuration Registers
  10. 10Application and Implementation
    1. 10.1 Application Information
    2. 10.2 Typical Application
      1. 10.2.1 Design Requirements
      2. 10.2.2 Detailed Design Procedure
        1. 10.2.2.1 PLL Multiplier/Divider Definition
      3. 10.2.3 Application Curves
  11. 11Power Supply Recommendations
  12. 12Layout
    1. 12.1 Layout Guidelines
    2. 12.2 Layout Example
  13. 13Device and Documentation Support
    1. 13.1 Documentation Support
    2. 13.2 Community Resources
    3. 13.3 Trademarks
    4. 13.4 Electrostatic Discharge Caution
    5. 13.5 Glossary
  14. 14Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

12 Layout

12.1 Layout Guidelines

When the CDCEL824 is used as a crystal buffer, any parasitics across the crystal affects the pulling range of the VCXO. Therefore, care must be taken in placing the crystal units on the board. Crystals should be placed as close to the device as possible, ensuring that the routing lines from the crystal terminals to XIN and XOUT have the same length.

If possible, cut out both ground plane and power plane under the area where the crystal and the routing to the device are placed. In this area, always avoid routing any other signal line, as it could be a source of noise coupling.

Additional discrete capacitors can be required to meet the load capacitance specification of certain crystal. For example, a 10.7-pF load capacitor is not fully programmable on the chip, because the internal capacitor can range from 0 pF to 20 pF with steps of 1 pF. The 0.7-pF capacitor therefore can be discretely added on top of an internal 10 pF.

To minimize the inductive influence of the trace, it is recommended to place this small capacitor as close to the device as possible and symmetrically with respect to XIN and XOUT.

Figure 16 shows a conceptual layout detailing recommended placement of power supply bypass capacitors. For component side mounting, use 0402 body size capacitors to facilitate signal routing. Keep the connections between the bypass capacitors and the power supply on the device as short as possible. Ground the other side of the capacitor using a low-impedance connection to the ground plane.

12.2 Layout Example

CDCEL824 layout_example_scas945.gif Figure 16. Board Layout