SNAS365G May   2006  – June 2016 DAC082S085

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Description (continued)
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Timing Requirements
    7. 7.7 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
      1. 8.2.1 Feature Description
        1. 8.2.1.1 DAC Architecture
        2. 8.2.1.2 Output Amplifiers
        3. 8.2.1.3 Reference Voltage
        4. 8.2.1.4 Power-On Reset
    3. 8.3 Device Functional Modes
      1. 8.3.1 Power-Down Modes
    4. 8.4 Programming
      1. 8.4.1 Serial Interface
      2. 8.4.2 Input Shift Register
      3. 8.4.3 DSP and Microprocessor Interfacing
        1. 8.4.3.1 ADSP-2101/ADSP2103 Interfacing
        2. 8.4.3.2 80C51/80L51 Interface
        3. 8.4.3.3 68HC11 Interface
        4. 8.4.3.4 Microwire Interface
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Bipolar Operation
        1. 9.2.1.1 Design Requirements
        2. 9.2.1.2 Detailed Design Procedure
        3. 9.2.1.3 Application Curve
  10. 10Power Supply Recommendations
    1. 10.1 Using References as Power Supplies
      1. 10.1.1 LM4130
      2. 10.1.2 LM4050
      3. 10.1.3 LP3985
      4. 10.1.4 LP2980
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Device Support
      1. 12.1.1 Device Nomenclature
        1. 12.1.1.1 Specification Definitions
    2. 12.2 Receiving Notification of Documentation Updates
    3. 12.3 Community Resource
    4. 12.4 Trademarks
    5. 12.5 Electrostatic Discharge Caution
    6. 12.6 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)(2)(3)
MIN MAX UNIT
Supply voltage, VA 6.5 V
Voltage on any input pin –0.3 6.5 V
Input current at any pin(4) 10 mA
Package input current(4) 20 mA
Power consumption at TA = 25°C See(5)
Junction temperature, TJ 150 °C
Storage temperature, Tstg –65 150 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) All voltages are measured with respect to GND = 0 V, unless otherwise specified.
(3) If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/Distributors for availability and specifications.
(4) When the input voltage at any pin exceeds 5.5 V or is less than GND, the current at that pin must be limited to 10 mA. The 20-mA maximum package input current rating limits the number of pins that can safely exceed the power supplies with an input current of 10 mA to two.
(5) The absolute maximum junction temperature (TJmax) for this device is 150°C. The maximum allowable power dissipation is dictated by TJmax, the junction-to-ambient thermal resistance (RθJA), and the ambient temperature (TA), and can be calculated using the formula PDMAX = (TJmax − TA) / RθJA. The values for maximum power dissipation is reached only when the device is operated in a severe fault condition (for example, when input or output pins are driven beyond the operating ratings, or the power supply polarity is reversed).

7.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)(2) ±2500 V
Machine model (MM) ±250
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) Human-body model is 100-pF capacitor discharged through a 1.5-kΩ resistor. Machine model is 220 pF discharged through 0 Ω.

7.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)(1)
MIN MAX UNIT
Operating temperature, TA –40 105 °C
Supply voltage, VA 2.7 5.5 V
Reference voltage, VREFIN 1 VA V
Digital input voltage(2) 0 5.5 V
Output load 0 1500 pF
SCLK frequency Up to 40 MHz
(1) All voltage are measured with respect to GND = 0 V, unless otherwise specified.
(2) The inputs are protected as shown below. Input voltage magnitudes up to 5.5 V, regardless of VA, does not cause errors in the conversation result. For example, if VA is 3 V, the digital input pins can be driven with a 5-V logic device.
DAC082S085 20195604.gif

7.4 Thermal Information

THERMAL METRIC(1) DAC082S085 UNIT
DGS (VSSOP) DSC (WSON)
10 PINS 10 PINS
RθJA Junction-to-ambient thermal resistance 240 250 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 53.3 40.7 °C/W
RθJB Junction-to-board thermal resistance 78.9 23.7 °C/W
ψJT Junction-to-top characterization parameter 4.8 0.4 °C/W
ψJB Junction-to-board characterization parameter 77.6 23.8 °C/W
RθJC(bottom) Junction-to-case (bottom) thermal resistance N/A 4.7 °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

7.5 Electrical Characteristics

The following specifications apply for VA = 2.7 V to 5.5 V, VREFIN = VA, CL = 200 pF to GND, fSCLK = 30 MHz, input code range 3 to 252. All limits are at TA = 25°C, unless otherwise specified.(1)
PARAMETER TEST CONDITIONS MIN TYP(2) MAX UNIT
STATIC PERFORMANCE
Resolution TMIN ≤ TA ≤ TMAX 8 Bits
Monotonicity TMIN ≤ TA ≤ TMAX 8 Bits
INL Integral non-linearity TA = 25°C ±0.14 LSB
TMIN ≤ TA ≤ TMAX ±0.5
DNL Differential non-linearity VA = 2.7 V to 5.5 V TA = 25°C Max 0.04 LSB
Min −0.02
TMIN ≤ TA ≤ TMAX −0.13 0.18
ZE Zero code error IOUT = 0 TA = 25°C 4 mV
TMIN ≤ TA ≤ TMAX 15
FSE Full-scale error IOUT = 0 TA = 25°C −0.1 %FSR
TMIN ≤ TA ≤ TMAX −0.75
GE Gain error All ones Loaded to DAC register TA = 25°C −0.2 %FSR
TMIN ≤ TA ≤ TMAX −1
ZCED Zero code error drift −20 µV/°C
TC GE Gain error tempco VA = 3 V −0.7 ppm/°C
VA = 5 V –1
OUTPUT CHARACTERISTICS
Output voltage(3) TMIN ≤ TA ≤ TMAX 0 VREFIN V
IOZ High-impedance output leakage current(3) TMIN ≤ TA ≤ TMAX ±1 µA
ZCO Zero code output VA = 3 V, IOUT = 200 µA 1.3 mV
VA = 3 V, IOUT = 1 mA 6
VA = 5 V, IOUT = 200 µA 7
VA = 5 V, IOUT = 1 mA 10
FSO Full-scale output VA = 3 V, IOUT = 200 µA 2.984 V
VA = 3 V, IOUT = 1 mA 2.934
VA = 5 V, IOUT = 200 µA 4.989
VA = 5 V, IOUT = 1 mA 4.958
IOS Output short-circuit current (source) VA = 3 V, VOUT = 0 V, Input Code = FFh –56 mA
VA = 5 V, VOUT = 0 V, Input Code = FFh –69
Output short-circuit current (sink) VA = 3 V, VOUT = 3 V, Input Code = 00h 52 mA
VA = 5 V, VOUT = 5 V, Input Code = 00h 75
IO Continuous output current(3) Available on each DAC output TMIN ≤ TA ≤ TMAX 11 mA
CL Maximum load capacitance RL = ∞ 1500 pF
RL = 2 kΩ 1500
ZOUT DC output impedance 7.5 Ω
REFERENCE INPUT CHARACTERISTICS
VREFIN Input range minimum TA = 25°C 0.2 V
TMIN ≤ TA ≤ TMAX 1
Input range maximum TMIN ≤ TA ≤ TMAX VA
Input impedance 60
LOGIC INPUT CHARACTERISTICS
IIN Input current(3) TMIN ≤ TA ≤ TMAX ±1 µA
VIL Input low voltage(3) VA = 3 V TA = 25°C 0.9 V
TMIN ≤ TA ≤ TMAX 0.6
VA = 5 V TA = 25°C 1.5
TMIN ≤ TA ≤ TMAX 0.8
VIH Input high voltage(3) VA = 3 V TA = 25°C 1.4 V
TMIN ≤ TA ≤ TMAX 2.1
VA = 5 V TA = 25°C 2.1
TMIN ≤ TA ≤ TMAX 2.4
CIN Input capacitance(3) TMIN ≤ TA ≤ TMAX 3 pF
POWER REQUIREMENTS
VA Supply voltage minimum TMIN ≤ TA ≤ TMAX 2.7 V
Supply voltage maximum TMIN ≤ TA ≤ TMAX 5.5
IN Normal supply current (output unloaded) fSCLK = 30 MHz VA = 2.7 V to 3.6 V TA = 25°C 210 µA
TMIN ≤ TA ≤ TMAX 270
VA = 4.5 V to 5.5 V TA = 25°C 320
TMIN ≤ TA ≤ TMAX 410
fSCLK = 0 VA = 2.7 V to 3.6 V 190
VA = 4.5 V to 5.5 V 290
IPD Power down supply current (output unloaded, SYNC = DIN = 0 V after PD mode loaded) All PD Modes(3) VA = 2.7 V to 3.6 V TA = 25°C 0.1 µA
TMIN ≤ TA ≤ TMAX 1
VA = 4.5 V to 5.5 V TA = 25°C 0.15 µA
TMIN ≤ TA ≤ TMAX 1
PN Normal supply power (output unloaded) fSCLK = 30 MHz VA = 2.7 V to 3.6 V TA = 25°C 0.6 mW
TMIN ≤ TA ≤ TMAX 1
VA = 4.5 V to 5.5 V TA = 25°C 1.6
TMIN ≤ TA ≤ TMAX 2.3
fSCLK = 0 VA = 2.7 V to 3.6 V 0.6
VA = 4.5 V to 5.5 V 1.5
PPD Power down supply current (output unloaded, SYNC = DIN = 0 V after PD mode loaded) All PD Modes(3) VA = 2.7 V to 3.6 V TA = 25°C 0.3 µW
TMIN ≤ TA ≤ TMAX 3.6
VA = 4.5 V to 5.5 V TA = 25°C 0.8
TMIN ≤ TA ≤ TMAX 5.5
(1) To ensure accuracy, it is required that VA and VREFIN be well bypassed.
(2) Typical figures are at TJ = 25°C, and represent most likely parametric norms. Test limits are specified to AOQL (Average Outgoing Quality Level).
(3) This parameter is specified by design or characterization and is not tested in production.

7.6 Timing Requirements

The following specifications apply for VA = +2.7V to +5.5V, VREFIN = VA, CL = 200 pF to GND, fSCLK = 30 MHz, input code range 3 to 252. All other limits are at TA = 25°C, unless otherwise specified. (1)
MIN TYP MAX UNIT
fSCLK SCLK frequency TA = 25°C 40 MHz
TMIN ≤ TA ≤ TMAX 30
ts Output voltage settling time(2) 40h to C0h code change
RL = 2 kΩ, CL = 200 pF
TA = 25°C 3 µs
TMIN ≤ TA ≤ TMAX 4.5
SR Output slew rate 1 V/µs
Glitch Impulse Code change from 80h to 7Fh 12 nV-sec
Digital feedthrough 0.5 nV-sec
Digital crosstalk 1 nV-sec
DAC-to-DAC crosstalk 3 nV-sec
Multiplying bandwidth VREFIN = 2.5 V ± 0.1 Vpp 160 kHz
Total harmonic distortion VREFIN = 2.5 V ± 1 Vpp
input frequency = 10 kHz
70 dB
tWU Wake-up time VA = 3 V 6 µs
VA = 5 V 39
1/fSCLK SCLK cycle time TA = 25°C 25 ns
TMIN ≤ TA ≤ TMAX 33
tCH SCLK high time TA = 25°C 7 ns
TMIN ≤ TA ≤ TMAX 10
tCL SCLK low time TA = 25°C 7 ns
TMIN ≤ TA ≤ TMAX 10
tSS SYNC setup time prior to SCLK falling edge TA = 25°C 4 ns
TMIN ≤ TA ≤ TMAX 10
tDS Data setup time prior to SCLK falling edge TA = 25°C 1.5 ns
TMIN ≤ TA ≤ TMAX 3.5
tDH Data hold time after SCLK falling edge TA = 25°C 1.5 ns
TMIN ≤ TA ≤ TMAX 3.5
tCFSR SCLK fall prior to rise of SYNC TA = 25°C 0 ns
TMIN ≤ TA ≤ TMAX 3
tSYNC SYNC high time TA = 25°C 6 ns
TMIN ≤ TA ≤ TMAX 10
(1) Typical figures are at TJ = 25°C, and represent most likely parametric norms. Test limits are specified to AOQL (Average Outgoing Quality Level).
(2) This parameter is specified by design or characterization and is not tested in production.
DAC082S085 20195606.gif Figure 1. Serial Timing Diagram

7.7 Typical Characteristics

VREF = VA, fSCLK = 30 MHz, TA = 25°C, Input Code Range 3 to 252, unless otherwise stated
DAC082S085 20195605.gif Figure 2. Input and Output Transfer Characteristic
DAC082S085 20195653.png Figure 4. INL at VA = 5 V
DAC082S085 20195655.png Figure 6. DNL at VA = 5 V
DAC082S085 20195657.png Figure 8. INL/DNL vs VREFIN at VA = 5 V
DAC082S085 20195622.png Figure 10. INL/DNL vs VA
DAC082S085 20195625.png Figure 12. INL/DNL vs Clock Duty Cycle at VA = 5 V
DAC082S085 20195627.png Figure 14. INL/DNL vs Temperature at VA = 5 V
DAC082S085 20195631.png Figure 16. Zero Code Error vs VREFIN
DAC082S085 20195635.png Figure 18. Zero Code Error vs Clock Duty Cycle
DAC082S085 20195637.png Figure 20. Full-Scale Error vs VA
DAC082S085 20195633.png Figure 22. Full-Scale Error vs fSCLK
DAC082S085 20195639.png Figure 24. Full-Scale Error vs Temperature
DAC082S085 20195645.png Figure 26. Supply Current vs Temperature
DAC082S085 20195647.png Figure 28. Power-On Reset
DAC082S085 20195652.png
Figure 3. INL at VA = 3 V
DAC082S085 20195654.png Figure 5. DNL at VA = 3 V
DAC082S085 20195656.png Figure 7. INL/DNL vs VREFIN at VA = 3 V
DAC082S085 20195650.png Figure 9. INL/DNL vs fSCLK at VA = 2.7 V
DAC082S085 20195624.png Figure 11. INL/DNL vs Clock Duty Cycle at VA = 3 V
DAC082S085 20195626.png Figure 13. INL/DNL vs Temperature at VA = 3 V
DAC082S085 20195630.png Figure 15. Zero Code Error vs VA
DAC082S085 20195634.png Figure 17. Zero Code Error vs fSCLK
DAC082S085 20195636.png Figure 19. Zero Code Error vs Temperature
DAC082S085 20195632.png Figure 21. Full-Scale Error vs VREFIN
DAC082S085 20195638.png Figure 23. Full-Scale Error vs Clock Duty Cycle
DAC082S085 20195644.png Figure 25. Supply Current vs VA
DAC082S085 20195646.png Figure 27. 5-V Glitch Response