SNAS515G July   2011  – December 2014 DAC161P997

PRODUCTION DATA.  

  1. Features
  2. Application
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Timing Requirements
    7. 6.7 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Error Detection and Reporting
      2. 7.3.2 Alarm Current
    4. 7.4 Device Functional Modes
    5. 7.5 Programming
      1. 7.5.1 Single-Wire Interface (SWIF)
        1. 7.5.1.1 Frame Format
        2. 7.5.1.2 Inter-Frame Period
        3. 7.5.1.3 Symbol Set
        4. 7.5.1.4 Interface Circuit
          1. 7.5.1.4.1 Transformer Coupled Interface - Data Flow to the DAC
          2. 7.5.1.4.2 Transformer Coupled Interface - Acknowledge Pulse
          3. 7.5.1.4.3 DC-Coupled Interface
          4. 7.5.1.4.4 Transformer Selection and SWIF Data Link Circuit Design
    6. 7.6 Register Maps
      1. 7.6.1 LCK
      2. 7.6.2 CONFIG1
      3. 7.6.3 CONFIG2
      4. 7.6.4 CONFIG3
      5. 7.6.5 ERR_LOW
      6. 7.6.6 ERR_HIGH
  8. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1 16-BIT DAC and Loop Drive
        1. 8.1.1.1 DC Characteristics
          1. 8.1.1.1.1 DC Input-Output Transfer Function
          2. 8.1.1.1.2 Loop Interface
          3. 8.1.1.1.3 Loop Compliance
        2. 8.1.1.2 AC Characteristics
          1. 8.1.1.2.1 Step Response
          2. 8.1.1.2.2 Output Impedance
          3. 8.1.1.2.3 PSRR
          4. 8.1.1.2.4 Stability
          5. 8.1.1.2.5 Noise and Ripple
          6. 8.1.1.2.6 Digital Feedthrough
          7. 8.1.1.2.7 HART Signal Injection
          8. 8.1.1.2.8 RC Filter Limitation
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
      3. 8.2.3 Application Curve
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Third-Party Products Disclaimer
    2. 11.2 Trademarks
    3. 11.3 Electrostatic Discharge Caution
    4. 11.4 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) (1)
MIN MAX UNIT
Supply relative to common (VA, VD to COMA, COMD) −0.3 6 V
Voltage between any 2 pins(1) 6 V
Current IN or OUT of any pin - except OUT(1) 5 mA
Output current at OUT 50 mA
Junction Temperature
Storage temperature range, Tstg −65 150 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±5500 V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) ±1250
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

MIN MAX UNIT
Supply Voltage Range 2.7 3.6 V
(VA - VD) 0 0 V
(COMA - COMD) 0 0 V
BASE load to COMA 0 15 pF
OUT load to COMA - -
Operating Temperature (TA) -40 105 °C

6.4 Thermal Information

THERMAL METRIC(1) WQFN (16-PINS) UNIT
RθJA Junction-to-ambient thermal resistance 35 °C/W
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

6.5 Electrical Characteristics

Unless otherwise noted, these specifications apply for VA = VD = 2.7 V to 3.6 V, TA = 25°C, external bipolar transistor: 2N3904, RE = 22Ω, C1 = C2 = C3 = 2.2 nF.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
POWER SUPPLY
VA, VD Supply Voltage VA = VD 2.7 3.6 V
VA Supply Current DACCODE=0x0200(2)
-40 to 105°C
75 µA
VD Supply Current 115 µA
Total Supply Current 190 µA
VPOR Power On Reset supply rail potential threshold 1.3 1.9 V
DC ACCURACY
N Resolution 16 Bits
INL Integral Non-Linearity(6) 0x2AAA < DACCODE < 0xD555
(4mA < ILOOP < 20 mA)
-40 to 105°C
–2.1 3.3 µA
DNL Differential Non-Linearity  See(7)
-40 to 105°C
–0.2 0.2
TUE Total Unadjusted Error 0x2AAA < DACCODE < 0xD555 –0.23% 0.23% FS
OE Offset Error See(3)
-40 to 105°C
−9.16 9.16 µA
Offset Error Temp. Coefficient 138 nA/°C
GE Gain Error See(4)
-40 to 105°C
−0.22% 0.22% FS
Gain Error Temp. Coefficient 5 29 ppmFS/°C
4 mA Loop Current Error DACCODE = 0x2AAA
-40 to 105°C
−18 18 µA
20 mA Loop Current Error DACCODE = 0xD555
-40 to 105°C
−55 55
IERRL LOW ERROR Current ERR_LOW = default
-40 to 105°C
3361 3375 3391
IERRH HIGH ERROR Current ERR_HIGH = default
-40 to 105°C
21702 21750 21817
LTD Long Term Drift — mean shift of 12 mA output current after 1000 hrs at 150°C 90 ppmFS
LOOP CURRENT OUTPUT (OUT)
Output Current Minimum tested at DACCODE = 0x01C2(5)
-40 to 105°C
0.18 24 mA
Output Impedance 100
COMA to OUT voltage drop IOUT = 24 mA 960 mV
BASE OUTPUT
BASE short circuit output current BASE forced to COMA potential 10 mA
DYNAMIC CHARACTERISTICS
Output Noise Density 1 kHz 20 nA/√Hz
Integrated Output Noise 1 Hz to 1 kHz band 300 nARMS
SWIF I/O CHARACTERISTICS
VIH DIN -40 to 105°C 0.7* VD V
VIL DIN -40 to 105°C 0.3*VD
CDIN DIN input capacitance 10 pF
VOH DBACK I = 3 mA
-40 to 105°C
2216 mV
I = 5 mA
-40 to 105°C
1783
VOL DBACK I = 3 mA
-40 to 105°C
547
I = 5 mA
-40 to 105°C
1260
TD DIN to DBACK delay 8 ns
OPEN DRAIN OUTPUTS
VOL ACKB I = 3 mA
-40 to 105°C
550 mV
I = 5 mA
-40 to 105°C
1370
VOL ERRB I = 300 µA
-40 to 105°C
66 mV
I = 3 mA
-40 to 105°C
602
IOZ ACKB Leakage current when output device is off
-40 to 105°C
1 µA
ERRB Leakage current when output device is off
-40 to 105°C
1
(1) When the input voltage (VIN) at any pin exceeds power supplies (VIN < COMA or VIN > VA), the current at that pin must not exceed 5 mA, and the voltage (VIN) at that pin relative to any other pin must not exceed 6.0V. See Pin Fuctions for additional details of input structures.
(2) At code 0x0200 the BASE current is minimal, i.e., device current contribution to power consumption is minimized. The SWIF link is inactive, i.e., after transmitting code 0x200 to the DAC161P997, there are no more transitions in the channel during the supply current measurement.
(3) Here offset is the y-intercept of the straight line defined by 4-mA and 20-mA points of the measured transfer characteristic.
(4) Here Gain Error is the difference in slope of the straight line defined by measured 4-mA and 20-mA points of transfer characteristic, and that of the ideal characteristic.
(5) This should be treated as the minimum LOOP current ensured specification.
(6) INL is measured using “best fit” method in the output current range of 4 mA to 20 mA.
(7) Specified by design.

6.6 Timing Requirements

MIN NOM MAX UNIT
SWIF TIMING, INTERNAL TIMER
Symbol rate: 1/TP 0.3 19.2 kHz
“D” symbol duty cycle: THD/TP 7/16 1/2 9/16
“0” symbol duty cycle: TH0/TP 3/16 1/4 5/16
"1” symbol duty cycle: TH1/TP 11/16 3/4 13/16
ACKB assert: TA/TP 1/16 1/4 4/8
ACKB deassert: TB/TP 12/8 7/4 31/16
TM Timeout PeriodM 90 100 110 ms
30154410.gif
Figure 1. Single-Wire Interface (SWIF) Timing Diagram

6.7 Typical Characteristics

Unless otherwise noted, data presented here was collected under these conditions VA = VD = 3.3V, TA = 25°C, external bipolar transistor: 2N3904, RE = 22Ω, C1 = C2 = C3 = 2.2 nF.
30154435.gifFigure 2. Supply Current vs Supply Voltage
30154434.gifFigure 4. Integrated Noise vs ILOOP
30154442.gifFigure 6. ΣΔ Modulator Filter Response
30154468.gifFigure 8. Supply Current vs ILOOP
30154471.gifFigure 10. PSRR: ILOOP=4 mA
30154436.gifFigure 3. Gain Error TC Distribution
30154438.gifFigure 5. Offset Error TC Distribution
30154444.gifFigure 7. Settling Time vs Input Step Size
30154469.gifFigure 9. Output Linearity vs Temperature
30154470.gifFigure 11. PSRR: ILOOP=20 mA