SLAS749E March   2011  – November 2015 DAC3484

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  Recommended Operating Conditions
    4. 6.4  Thermal InformationZAY package information to Thermal InformationTJ row from top of thermal table
    5. 6.5  Electrical Characteristics - DC Specifications
    6. 6.6  Electrical Characteristics - Digital Specifications
    7. 6.7  Electrical Characteristics - AC Specifications
    8. 6.8  Timing Requirements - Digital Specifications
    9. 6.9  Switching Characteristics - AC Specifications
    10. 6.10 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  Serial Interface
      2. 7.3.2  Data Interface
        1. 7.3.2.1 Word-Wide Format
        2. 7.3.2.2 Byte-Wide Format
      3. 7.3.3  Input FIFO
      4. 7.3.4  FIFO Modes of Operation
        1. 7.3.4.1 Dual Sync Sources Mode
        2. 7.3.4.2 Single Sync Source Mode
        3. 7.3.4.3 Bypass Mode
      5. 7.3.5  Clocking Modes
        1. 7.3.5.1 PLL Bypass Mode
        2. 7.3.5.2 PLL Mode
      6. 7.3.6  FIR Filters
      7. 7.3.7  Complex Signal Mixer
        1. 7.3.7.1 Full Complex Mixer
        2. 7.3.7.2 Coarse Complex Mixer
        3. 7.3.7.3 Mixer Gain
        4. 7.3.7.4 Real Channel Upconversion
      8. 7.3.8  Quadrature Modulation Correction (QMC)
        1. 7.3.8.1 Gain and Phase Correction
        2. 7.3.8.2 Offset Correction
        3. 7.3.8.3 Group Delay Correction
      9. 7.3.9  Temperature Sensor
      10. 7.3.10 Data Pattern Checker
      11. 7.3.11 Parity Check Test
        1. 7.3.11.1 Word-by-Word Parity
        2. 7.3.11.2 Block Parity
      12. 7.3.12 DAC3484 Alarm Monitoring
      13. 7.3.13 LVPECL Inputs
      14. 7.3.14 LVDS Inputs
      15. 7.3.15 Unused LVDS Port Termination
      16. 7.3.16 CMOS Digital Inputs
      17. 7.3.17 Reference Operation
      18. 7.3.18 DAC Transfer Function
      19. 7.3.19 Analog Current Outputs
    4. 7.4 Device Functional Modes
      1. 7.4.1 Multi-Device Synchronization
        1. 7.4.1.1 Multi-Device Synchronization: PLL Bypassed with Dual Sync Sources Mode
        2. 7.4.1.2 Multi-Device Synchronization: PLL Enabled with Dual Sync Sources Mode
        3. 7.4.1.3 Multi-Device Operation: Single Sync Source Mode
    5. 7.5 Programming
      1. 7.5.1 Power-Up Sequence
      2. 7.5.2 Example Start-Up Routine
        1. 7.5.2.1 Device Configuration
        2. 7.5.2.2 PLL Configuration
        3. 7.5.2.3 NCO Configuration
        4. 7.5.2.4 Example Start-Up Sequence
    6. 7.6 Register Map
      1. 7.6.1 Register Descriptions
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Applications
      1. 8.2.1 IF Based LTE Transmitter
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
          1. 8.2.1.2.1 Data Input Rate
          2. 8.2.1.2.2 Interpolation
          3. 8.2.1.2.3 LO Feedthrough and Sideband Correction
        3. 8.2.1.3 Application Curves
      2. 8.2.2 Direct Upconversion (Zero IF) LTE Transmitter
        1. 8.2.2.1 Design Requirements
        2. 8.2.2.2 Detailed Design Procedure
          1. 8.2.2.2.1 Data Input Rate
          2. 8.2.2.2.2 Interpolation
          3. 8.2.2.2.3 LO Feedthrough and Sideband Correction
        3. 8.2.2.3 Application Curves
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
      1. 10.1.1 Assembly
    2. 10.2 Layout Examples
  11. 11Device and Documentation Support
    1. 11.1 Device Support
      1. 11.1.1 Third-Party Products Disclaimer
      2. 11.1.2 Device Nomenclature
        1. 11.1.2.1 Definition of Specifications
    2. 11.2 Documentation Support
      1. 11.2.1 Related Documentation
    3. 11.3 Community Resources
    4. 11.4 Trademarks
    5. 11.5 Electrostatic Discharge Caution
    6. 11.6 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)
MIN MAX UNIT
Supply voltage range(2) DACVDD, DIGVDD, CLKVDD –0.5 1.5 V
VFUSE –0.5 1.5 V
IOVDD –0.5 4 V
AVDD, PLLAVDD –0.5 4 V
Pin voltage range(2) D[15..0]P/N, DATACLKP/N, FRAMEP/N, PARITYP/N, SYNCP/N –0.5 IOVDD + 0.5 V
DACCLKP/N, OSTRP/N –0.5 CLKVDD + 0.5 V
ALARM, SDO, SDIO, SCLK, SDENB, SLEEP, RESETB, TESTMODE, TXENABLE –0.5 IOVDD + 0.5 V
IOUTAP/N, IOUTBP/N, IOUTCP/N, IOUTDP/N –1.0 AVDD + 0.5 V
EXTIO, BIASJ –0.5 AVDD + 0.5 V
LPF 0.5 PLLAVDD+0.5V V
Peak input current (any input) 20 mA
Peak total input current (all inputs) –30 mA
Operating free-air temperature range, TA: DAC3484 –40 85 °C
Absolute maximum junction temperature, TJ 150 °C
Storage temperature range –65 150 °C
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only and functional operation of these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) Measured with respect to GND.

6.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±2000 V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) ±500
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

MIN NOM MAX UNIT
TJ Recommended operating junction temperature 105 °C
Maximum rated operating junction temperature(1) 125
TA Recommended free-air temperature –40 25 85 °C
(1) Prolonged use at this junction temperature may increase the device failure-in-time (FIT) rate.

6.4 Thermal Information

THERMAL METRIC(1) DAC3484 UNIT
RKD
(WQFN-MR)
ZAY
(NFBGA)
88 PINS 196 BALLS
RθJA Junction-to-ambient thermal resistance 22.1 37.6 °C/W
RθJCtop Junction-to-case (top) thermal resistance 7.1 6.8 °C/W
RθJCbot Junction-to-case (bottom) thermal resistance 0.6 N/A °C/W
θJB Junction-to-board thermal resistance 4.7 16.8 °C/W
ψJT Junction-to-top characterization parameter 0.1 0.2 °C/W
ψJB Junction-to-board characterization parameter 4.6 16.4 °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report (SPRA953).

6.5 Electrical Characteristics – DC Specifications(1)

over recommended operating free-air temperature range, nominal supplies, IOUTFS = 20 mA (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
Resolution 16 Bits
DC ACCURACY
DNL Differential nonlinearity 1 LSB = IOUTFS/216 ±2 LSB
INL Integral nonlinearity ±4 LSB
ANALOG OUTPUT
Coarse gain linearity ±0.04 LSB
Offset error Mid code offset ±0.001 %FSR
Gain error With external reference ±2 %FSR
With internal reference ±2 %FSR
Gain mismatch With internal reference ±2 %FSR
Full scale output current 10 20 30 mA
Output compliance range –0.5 0.6 V
Output resistance 300
Output capacitance 5 pF
REFERENCE OUTPUT
VREF Reference output voltage 1.2 V
Reference output current(2) 100 nA
REFERENCE INPUT
VEXTIO Input voltage range External Reference Mode 0.6 1.2 1.25 V
Input resistance 1
Small signal bandwidth 472 kHz
Input capacitance 100 pF
TEMPERATURE COEFFICIENTS
Offset drift ±1 ppm/°C
Gain drift with external reference ±15 ppm/°C
with internal reference ±30 ppm/°C
Reference voltage drift ±8 ppm/°C
POWER SUPPLY(3)
AVDD, IOVDD, PLLAVDD All Conditions 3.14 3.3 3.46 V
DIGVDD All Conditions 1.14 1.2 1.32 V
CLKVDD, DACVDD FDAC Sampling Rate ≤ 1.25 GSPS, PLL OFF
FDAC Sampling Rate ≤ 1 GSPS, PLL ON
1.14 1.2 1.32 V
FDAC Sampling Rate > 1 GSPS, PLL ON 1.25 1.29 1.32
PSRR Power Supply Rejection Ratio DC tested ±0.2 %FSR/V
POWER CONSUMPTION
I(AVDD) Analog supply current(4) MODE 1
fDAC = 1.25 GSPS, 4x interpolation, Mixer on,
QMC on, invsinc on, PLL enabled, 20-mA FS output, IF = 200 MHz
123 135 mA
I(DIGVDD) Digital supply current 595 650 mA
I(DACVDD) DAC supply current 35 50 mA
I(CLKVDD) Clock supply current 90 100 mA
P Power dissipation 1270 1320 mW
I(AVDD) Analog supply current(4) MODE 2
fDAC = 1.25 GSPS, 4x interpolation, Mixer on,
QMC on, invsinc on, PLL disabled, 20-mA FS output, IF = 200 MHz
107 mA
I(DIGVDD) Digital supply current 595 mA
I(DACVDD) DAC supply current 38 mA
I(CLKVDD) Clock supply current 71 mA
P Power dissipation 1198 mW
I(AVDD) Analog supply current(4) MODE 3
fDAC = 625 MSPS, 2x interpolation, Mixer on,
QMC on, invsinc off, PLL disabled, 20-mA FS output, IF = 200 MHz
107 mA
I(DIGVDD) Digital supply current 282 mA
I(DACVDD) DAC supply current 20 mA
I(CLKVDD) Clock supply current 41 mA
P Power dissipation 765 mW
I(AVDD) Analog supply current(4) MODE 4
fDAC = 1.25 GSPS, 4x interpolation, Mixer on,
QMC on, invsinc on, PLL enabled, Channels A/B/C/D output sleep, IF = 200 MHz,
35 mA
I(DIGVDD) Digital supply current 595 mA
I(DACVDD) DAC supply current 38 mA
I(CLKVDD) Clock supply current 90 mA
P Power dissipation 984 mW
I(AVDD) Analog supply current(4) Mode 5
Power-Down mode: No clock,
DAC on sleep mode (clock receiver sleep),
Channels A/B/C/D output sleep, static data pattern
20 mA
I(DIGVDD) Digital supply current 10 mA
I(DACVDD) DAC supply current 4 mA
I(CLKVDD) Clock supply current 10 mA
P Power Dissipation 95 mW
I(AVDD) Analog supply current(4) Mode 6
fDAC = 1 GSPS, 8x interpolation, Mixer off,
QMC on, invsinc off, PLL enabled, 20-mA FS output, IF = 200 MHz
107 mA
I(DIGVDD) Digital supply current 333 mA
I(DACVDD) DAC supply current 35 mA
I(CLKVDD) Clock supply current 60 mA
P Power dissipation 867 mW
I(AVDD) Analog supply current(4) Mode 7
fDAC = 737.28 MSPS, 4x interpolation, Mixer on,
QMC on, invsinc off, PLL enabled, 20-mA FS output, IF = 150 MHz
123 mA
I(DIGVDD) Digital supply current 323 mA
I(DACVDD) DAC supply current 23 mA
I(CLKVDD) Clock supply current 69 mA
P Power dissipation 904 mW
(1) Measured differentially across IOUTP/N with 25 Ω each to GND.
(2) Use an external buffer amplifier with high impedance input to drive any external load.
(3) To ensure power supply accuracy and to account for power supply filter network loss at operating conditions, the use of the ATEST function in register config27 to check the internal power supply nodes is recommended.
(4) Includes AVDD, PLLAVDD, and IOVDD

6.6 Electrical Characteristics – Digital Specifications

over operating free-air temperature range (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
LVDS INPUTS: D[15:0]P/N, DATACLKP/N, FRAMEP/N, SYNCP/N, PARITYP/N(1)
VA,B+ Logic high differential input voltage threshold 200 mV
VA,B– Logic low differential input voltage threshold –200 mV
VCOM Input Common Mode 1.0 1.2 1.6 V
ZT Internal termination 85 110 135 Ω
CL LVDS Input capacitance 2 pF
fINTERL Interleaved LVDS data transfer rate 1250 MSPS
fDATA Input data rate 312.5 MSPS
CLOCK INPUT (DACCLKP/N)
Differential voltage(2) |DACCLKP - DACCLKN| 0.4 0.8 V
Internally biased common-mode voltage 0.2 V
Single-ended input level(3) –0.4 V
OUTPUT STROBE (OSTRP/N)
Differential voltage |OSTRP – OSTRN| 0.4 0.8 V
Internally biased common-mode voltage 0.2 V
Single-ended input level(3) –0.4 V
CMOS INTERFACE: ALARM, SDO, SDIO, SCLK, SDENB, SLEEP, RESETB, TXENABLE
VIH High-level input voltage 2 V
VIL Low-level input voltage 0.8 V
IIH High-level input current -40 40 µA
IIL Low-level input current -40 40 µA
CI CMOS Input capacitance 2 pF
VOH ALARM, SDO, SDIO Iload = –100 μA IOVDD – 0.2 V
Iload = –2 mA 0.8 x IOVDD V
VOL ALARM, SDO, SDIO Iload = 100 μA 0.2 V
Iload = 2 mA 0.5 V
(1) See LVDS Inputs section for terminology.
(2) Standard high swing LVPECL clock signal should be applied for best performance.
(3) Indicates the minimum voltage that can be applied to the DACCLK and OSTR differential pins in single-ended fashion.

6.7 Electrical Characteristics – AC Specifications

over recommended operating free-air temperature range, nominal supplies, IOUTFS = 20mA (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
ANALOG OUTPUT(1)
fDAC Maximum DAC rate 1250 MSPS
AC PERFORMANCE(2)
SFDR Spurious free dynamic range
(0 to fDAC/2) Tone at 0 dBFS
fDAC = 1.25 GSPS, fOUT = 20 MHz 82 dBc
fDAC = 1.25 GSPS, fOUT = 50 MHz 77
fDAC = 1.25 GSPS, fOUT = 70 MHz 72
IMD3 Third-order two-tone intermodulation distortion
Each tone at –12 dBFS
fDAC = 1.25 MSPS, fOUT = 30 ± 0.5 MHz 81 dBc
fDAC = 1.25 GSPS, fOUT = 50 ± 0.5 MHz 79
fDAC = 1.25 GSPS, fOUT = 100 ± 0.5 MHz 77.5
NSD Noise Spectral Density
Tone at 0dBFS
fDAC = 1.25 GSPS, fOUT = 10 MHz 160 dBc/Hz
fDAC = 1.25 GSPS, fOUT = 80 MHz 155
ACLR(3) Adjacent channel leakage ratio, single carrier fDAC = 1.2288 GSPS, fOUT = 30.72 MHz 77 dBc
fDAC = 1.2288 GSPS, fOUT = 153.6 MHz 74
Alternate channel leakage ratio, single carrier fDAC = 1.2288 GSPS, fOUT = 30.72 MHz 82
fDAC = 1.2288 GSPS, fOUT = 153.6 MHz 80
Channel Isolation fDAC = 1.25 GSPS, fOUT = 10 MHz 84 dBc
(1) Measured single ended into 50-Ω load.
(2) 4:1 transformer output termination, 50 Ω doubly terminated load.
(3) Single carrier, W-CDMA with 3.84-MHz BW, 5-MHz spacing, centered at IF, PAR = 12dB. TESTMODEL 1, 10 ms

6.8 Timing Requirements – Digital Specifications

MIN NOM MAX UNIT
CLOCK INPUT (DACCLKP/N)
Duty cycle 40% 60%
DACCLKP/N input frequency 1250 MHz
OUTPUT STROBE (OSTRP/N)
fOSTR Frequency fOSTR = fDACCLK / (n x 8 x Interp) where n is any positive integer, fDACCLK is DACCLK frequency in MHz fDACCLK /
(8 x interp)
MHz
Duty cycle 50%
DIGITAL INPUT TIMING SPECIFICATIONS
Timing LVDS inputs: D[15:0]P/N, FRAMEP/N, SYNCP/N, PARITYP/N, double edge latching
ts(DATA) Setup time, D[15:0]P/N, FRAMEP/N, SYNCP/N and PARITYP/N, valid to either edge of DATACLKP/N FRAMEP/N reset and frame indicator latched on rising edge of DATACLKP/N.
FRAMEP/N parity bit latched on falling edge of DATACLKP/N.
Config36 Setting
datadly clkdly
0 0 150 ps
0 1 100
0 2 50
0 3 0
0 4 -50
0 5 -100
0 6 -150
0 7 -200
1 0 200
2 0 250
3 0 300
4 0 350
5 0 400
6 0 450
7 0 500
th(DATA) Hold time, D[15:0]P/N, FRAMEP/N, SYNCP/N and PARITYP/N, valid after either edge of DATACLKP/N FRAMEP/N reset and frame indicator latched on rising edge of DATACLKP/N.
FRAMEP/N parity bit latched on falling edge of DATACLKP/N.
Config36 Setting ps
datadly clkdly
0 0 350
0 1 400
0 2 450
0 3 500
0 4 550
0 5 600
0 6 650
0 7 700
1 0 300
2 0 250
3 0 200
4 0 150
5 0 100
6 0 50
7 0 0
t(FRAME_SYNC) FRAMEP/N and SYNCP/N pulse width fDATACLK is DATACLK frequency in MHz 1/2fDATACLK ns
TIMING OUTPUT STROBE INPUT: DACCLKP/N rising edge LATCHING(1)
ts(OSTR) Setup time, OSTRP/N valid to rising edge of DACCLKP/N 0 ps
th(OSTR) Hold time, OSTRP/N valid after rising edge of DACCLKP/N 300 ps
TIMING SYNC INPUT: DACCLKP/N rising edge LATCHING(2)
ts(SYNC_PLL) Setup time, SYNCP/N valid to rising edge of DACCLKP/N 200 ps
th(SYNC_PLL) Hold time, SYNCP/N valid after rising edge of DACCLKP/N 300 ps
TIMING SERIAL PORT
ts(SDENB) Setup time, SDENB to rising edge of SCLK 20 ns
ts(SDIO) Setup time, SDIO valid to rising edge of SCLK 10 ns
th(SDIO) Hold time, SDIO valid to rising edge of SCLK 5 ns
t(SCLK) Period of SCLK Register config6 read (temperature sensor read) 1 µs
All other registers 100 ns
td(Data) Data output delay after falling edge of SCLK 10 ns
tRESET Minimum RESETB pulse width 25 ns
(1) OSTR is required in Dual Sync Sources mode. In order to minimize the skew it is recommended to use the same clock distribution device such as Texas Instruments CDCE62005 or LMK0480x family to provide the DACCLK and OSTR signals to all the DAC3484 devices in the system. Swap the polarity of the DACCLK outputs with respect to the OSTR ones to establish proper phase relationship.
(2) SYNC is required to synchronize the PLL circuit in multiple devices. The SYNC signal must meet the timing relationship with respect to the reference clock (DACCLKP/N) of the on-chip PLL circuit.

6.9 Switching Characteristics – AC Specifications

over recommended operating free-air temperature range, nominal supplies, IOUTFS = 20 mA (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
ANALOG OUTPUT(1)
ts(DAC) Output settling time to 0.1% Transition: Code 0x0000 to 0xFFFF 10 ns
tpd Output propagation delay DAC outputs are updated on the falling edge of DAC clock. Does not include Digital Latency (see below). 2 ns
tr(IOUT) Output rise time 10% to 90% 220 ps
tf(IOUT) Output fall time 90% to 10% 220 ps
Digital latency No interpolation, FIFO on, Mixer off, QMC off, Inverse sinc off 128 DAC clock cycles
2x Interpolation 216
4x Interpolation 376
8x Interpolation 726
16x Interpolation 1427
Fine mixer 24
QMC 32
Inverse sinc 36
Power-up
Time
DAC wake-up time IOUT current settling to 1% of IOUTFS from output sleep 2 µs
DAC sleep time IOUT current settling to less than 1% of IOUTFS in output sleep 2
(1) Measured single ended into 50-Ω load.

6.10 Typical Characteristics

All plots are at 25°C, nominal supply voltage, fDAC = 1250 MSPS, 4x interpolation, NCO enabled, Mixer Gain disabled, QMC enabled with gain set at 1446 for both I/Q channels, 0 dBFS digital input, 20-mA full-scale output current with 4:1 transformer (unless otherwise noted)
DAC3484 G001_LAS748.png Figure 1. Integral Nonlinearity
DAC3484 G003_LAS748.png Figure 3. SFDR vs Output Frequency Over Input Scale
DAC3484 G005_LAS748.png Figure 5. Third Harmonic Distortion vs Output Frequency Over Input Scale
DAC3484 G007_LAS748.png Figure 7. SFDR vs Output Frequency Over fDAC
DAC3484 G009_LAS748.png Figure 9. Single Tone Spectral Plot
DAC3484 G011_LAS748.png Figure 11. Single Tone Spectral Plot
DAC3484 G013_LAS748.png Figure 13. Single Tone Spectral Plot
DAC3484 G015_LAS748.png Figure 15. IMD3 vs Output Frequency Over Interpolation
DAC3484 G017_LAS748.png Figure 17. IMD3 vs Output Frequency Over IOUTFS
DAC3484 G019_LAS748.png Figure 19. Two Tone Spectral Plot
DAC3484 G021_las748B.png Figure 21. NSD vs Output Frequency Over Interpolation
DAC3484 G023_las748B.png Figure 23. NSD vs Output Frequency Over IOUTFS
DAC3484 G025_LAS748.png Figure 25. Single Carrier WCDMA ACLR (Adjacent) vs Output Frequency Over Clocking Options
DAC3484 G027_LAS748.gif Figure 27. Single Carrier W-CDMA Test Model 1
DAC3484 G029_LAS748.gif
Figure 29. Single Carrier W-CDMA Test Model 1
DAC3484 G031_LAS748.gif Figure 31. Four Carrier W-CDMA Test Model 1
DAC3484 G033_LAS748.gif Figure 33. 10-MHz Single Carrier LTE Test Model 3.1
DAC3484 G035_LAS748.gif Figure 35. 20-MHz Single Carrier LTE Test Model 3.1
DAC3484 G037_LAS749.png Figure 37. Power Consumption vs fDAC Over Interpolation
DAC3484 G039_LAS749.png Figure 39. Power Consumption vs fDAC Over Digital Processing Functions
DAC3484 G041_LAS749.png Figure 41. DIGVDD Current vs fDAC Over Interpolation
DAC3484 G043_LAS749.png Figure 43. DACVDD Current vs fDAC
DAC3484 G045_LAS749.png Figure 45. AVDD Current vs fDAC
DAC3484 G047_LAS749.png Figure 47. Channel Isolation vs Output Frequency
DAC3484 G049_LAS748C.png Figure 49. IMD3 vs Output Frequency
DAC3484 G002_LAS748.png Figure 2. Differential Nonlinearity
DAC3484 G004_LAS748.png Figure 4. Second Harmonic Distortion vs Output Frequency Over Input Scale
DAC3484 G006_LAS748.png Figure 6. SFDR vs Output Frequency Over Interpolation
DAC3484 G008_LAS748.png Figure 8. SFDR vs Output Frequency Over IOUTFS
DAC3484 G010_LAS748.png Figure 10. Single Tone Spectral Plot
DAC3484 G012_LAS748.png Figure 12. Single Tone Spectral Plot
DAC3484 G014_LAS748.png Figure 14. IMD3 vs Output Frequency Over Input Scale
DAC3484 G016_LAS748.png Figure 16. IMD3 vs Output Frequency Over fDAC
DAC3484 G018_LAS748.png Figure 18. Two Tone Spectral Plot
DAC3484 G020_las748B.png Figure 20. NSD vs Output Frequency Over Input Scale
DAC3484 G022_las748B.png Figure 22. NSD vs Output Frequency Over fDAC
DAC3484 G024_LAS748.png Figure 24. NSD vs Output Frequency Over Clocking Options
DAC3484 G026_LAS748.png Figure 26. Single Carrier WCDMA ACLR (Alternate) vs Output Frequency Over Clocking Options
DAC3484 G028_LAS748.gif Figure 28. Single Carrier W-CDMA Test Model 1
DAC3484 G030_LAS748.gif Figure 30. Four Carrier W-CDMA Test Model 1
DAC3484 G032_LAS748.gif Figure 32. Four Carrier W-CDMA Test Model 1
DAC3484 G034_LAS748.gif Figure 34. 10-MHz Single Carrier LTE Test Model 3.1
DAC3484 G036_LAS748.gif Figure 36. 20-MHz Single Carrier LTE Test Model 3.1
DAC3484 G038_LAS749.png Figure 38. Power Consumption vs fDAC Over Interpolation
DAC3484 G040_LAS749.png Figure 40. DIGVDD Current vs fDAC Over Interpolation
DAC3484 G042_LAS749.png Figure 42. DIGVDD Current vs fDAC Over Digital Processing Functions
DAC3484 G044_LAS749.png Figure 44. CLKVDD Current vs fDAC
DAC3484 G046_LAS749.png Figure 46. Channel Isolation vs Output Frequency
DAC3484 G048_LAS748C.png Figure 48. SFDR vs Output Frequency