SBASAS1A November   2023  – March 2024 DAC39RF12 , DAC39RFS12

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Device Comparison
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  Recommended Operating Conditions
    4. 6.4  Thermal Information
    5. 6.5  Electrical Characteristics - DC Specifications
    6. 6.6  Electrical Characteristics - AC Specifications
    7. 6.7  Electrical Characteristics - Power Consumption
    8. 6.8  Timing Requirements
    9. 6.9  Switching Characteristics
    10. 6.10 SPI and FRI Timing Diagrams
    11. 6.11 Typical Characteristics: Bandwidth and DC Linearity
    12. 6.12 Typical Characteristics: Single Tone Spectra
    13. 6.13 Typical Characteristics: Dual Tone Spectra
    14. 6.14 Typical Characteristics: Noise Spectral Density
    15. 6.15 Typical Characteristics: Linearity Sweeps
    16. 6.16 Typical Characteristics: Modulated Waveforms
    17. 6.17 Typical Characteristics: Phase and Amplitude Noise
    18. 6.18 Typical Characteristics: Power Dissipation and Supply Currents
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagrams
    3. 7.3 Feature Description
      1. 7.3.1 DAC Output Modes
        1. 7.3.1.1 NRZ Mode
        2. 7.3.1.2 RTZ Mode
        3. 7.3.1.3 RF Mode
        4. 7.3.1.4 DES Mode
      2. 7.3.2 DAC Core
        1. 7.3.2.1 DAC Output Structure
        2. 7.3.2.2 Full-Scale Current Adjustment
      3. 7.3.3 DEM and Dither
      4. 7.3.4 Offset Adjustment
      5. 7.3.5 Clocking Subsystem
        1. 7.3.5.1 SYSREF Frequency Requirements
        2. 7.3.5.2 SYSREF Position Detector and Sampling Position Selection (SYSREF Windowing)
      6. 7.3.6 Digital Signal Processing Blocks
        1. 7.3.6.1 Digital Upconverter (DUC)
          1. 7.3.6.1.1 Interpolation Filters
          2. 7.3.6.1.2 Numerically Controlled Oscillator (NCO)
            1. 7.3.6.1.2.1 Phase-Continuous NCO Update Mode
            2. 7.3.6.1.2.2 Phase-coherent NCO Update Mode
            3. 7.3.6.1.2.3 Phase-sync NCO Update Mode
            4. 7.3.6.1.2.4 NCO Synchronization
              1. 7.3.6.1.2.4.1 JESD204C LSB Synchonization
            5. 7.3.6.1.2.5 NCO Mode Programming
          3. 7.3.6.1.3 Mixer Scaling
        2. 7.3.6.2 Channel Bonder
        3. 7.3.6.3 DES Interpolator
      7. 7.3.7 JESD204C Interface
        1. 7.3.7.1  Deviation from JESD204C Standard
        2. 7.3.7.2  Transport Layer
        3. 7.3.7.3  Scrambler and Descrambler
        4. 7.3.7.4  Link Layer
        5. 7.3.7.5  Physical Layer
        6. 7.3.7.6  Serdes PLL Control
        7. 7.3.7.7  Serdes Crossbar
        8. 7.3.7.8  Multi-Device Synchronization and Deterministic Latency
          1. 7.3.7.8.1 Programming RBD
        9. 7.3.7.9  Operation in Subclass 0 Systems
        10. 7.3.7.10 Link Reset
      8. 7.3.8 Alarm Generation
    4. 7.4 Device Functional Modes
      1. 7.4.1 DUC and DDS Modes
      2. 7.4.2 JESD204C Interface Modes
        1. 7.4.2.1 JESD204C Interface Modes
        2. 7.4.2.2 JESD204C Format Diagrams
          1. 7.4.2.2.1 16-bit Formats
          2. 7.4.2.2.2 12-bit Formats
          3. 7.4.2.2.3 8-bit Formats
      3. 7.4.3 NCO Synchronization Latency
      4. 7.4.4 Data Path Latency
    5. 7.5 Programming
      1. 7.5.1 Using the Standard SPI Interface
        1. 7.5.1.1 SCS
        2. 7.5.1.2 SCLK
        3. 7.5.1.3 SDI
        4. 7.5.1.4 SDO
        5. 7.5.1.5 Serial Interface Protocol
        6. 7.5.1.6 Streaming Mode
      2. 7.5.2 Using the Fast Reconfiguration Interface
      3. 7.5.3 SPI Register Map
  9. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1 Startup Procedure for DUC/Bypass Mode
      2. 8.1.2 Startup Procedure for DDS Mode
      3. 8.1.3 Eye Scan Procedure
      4. 8.1.4 Pre/Post Cursor Analysis Procedure
      5. 8.1.5 Understanding Dual Edge Sampling Modes
      6. 8.1.6 Sleep and Disable Modes
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Transmitter Design Procedure
        1. 8.2.2.1 Detailed Clocking Subsystem Design Procedure
          1. 8.2.2.1.1 Example 1: SWAP-C Optimized
          2. 8.2.2.1.2 Example 2: Improved Phase Noise LMX2820 with External VCO
          3. 8.2.2.1.3 Example 3: Discrete Analog PLL for Best DAC Performance
          4. 8.2.2.1.4 12 GHz Clock Generation
      3. 8.2.3 Application Curves
    3. 8.3 Power Supply Recommendations
      1. 8.3.1 Power Up and Down Sequence
    4. 8.4 Layout
      1. 8.4.1 Layout Guidelines and Example
  10. Device and Documentation Support
    1. 9.1 Receiving Notification of Documentation Updates
    2. 9.2 Support Resources
    3. 9.3 Trademarks
    4. 9.4 Electrostatic Discharge Caution
    5. 9.5 Glossary
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

DEM and Dither

The device contains two optional features to improve non-linearity due to current segment and switch timing mismatch: Dynamic element Mixing (DEM) and dither.

The DAC core consists of

  1. Thermometer encoded current sources/switches representing the upper MSBs
  2. Thermometer encoded current sources/switches representing the middle bits (called ULSBs)
  3. Binary weighted current sources/switches representing the lower LSBs.
  4. Additional current sources/switches for dithering

DEM randomizes which MSB and ULSB current sources/switches are used to generate the output, which whitens the non-linearity due to mismatches between the current sources and switch timing. The DEM_DACA/B and DEM_ADJ registers control the frequency and amplitude of the shift in current sources/segments.

Dither add or subtracts 8 different digital code values to the digital data which are then cancelled by switching additional current sources with the same amplitude. The digital data path is expanded so the full 16-bit range is maintained. The DITH_DACA/B registers control the frequency of the dither.

Using DEM generally improves low order harmonics near fullscale. Dither generally improves higher order harmonics near fullscale and all harmonics at lower digital amplitudes. Both DEM and dither increase the noise floor (both amplitude and phase) of the output due to the whitening of the non-linearity and the additional switching activity. This is reduced by DEM and dither settings with lower switching activity, e.g. data dependent or reduced activity DEM. However, data dependent or reduced activity DEM is less effective at higher output frequencies. For data sheet specification testing in Section 6.6, data dependent DEM (DEM_ADJ = 1) is used below 750 MHz and normal activity DEM (DEM_ADJ = 0) above 750 MHz, but different settings (including disabling DEM and/or dither) can be tested and the best chosen based on the specific use case.