SLASF72 March   2023 DAC53004W

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  Recommended Operating Conditions
    4. 6.4  Thermal Information
    5. 6.5  Electrical Characteristics: Voltage Output
    6. 6.6  Electrical Characteristics: Current Output
    7. 6.7  Electrical Characteristics: Comparator Mode
    8. 6.8  Electrical Characteristics: General
    9. 6.9  Timing Requirements: I2C Standard Mode
    10. 6.10 Timing Requirements: I2C Fast Mode
    11. 6.11 Timing Requirements: I2C Fast Mode Plus
    12. 6.12 Timing Requirements: SPI Write Operation
    13. 6.13 Timing Requirements: SPI Read and Daisy Chain Operation (FSDO = 0)
    14. 6.14 Timing Requirements: SPI Read and Daisy Chain Operation (FSDO = 1)
    15. 6.15 Timing Requirements: GPIO
    16. 6.16 Timing Diagrams
    17. 6.17 Typical Characteristics: Voltage Output
    18. 6.18 Typical Characteristics: Current Output
    19. 6.19 Typical Characteristics: Comparator
    20. 6.20 Typical Characteristics: General
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Smart Digital-to-Analog Converter (DAC) Architecture
      2. 7.3.2 Digital Input/Output
      3. 7.3.3 Nonvolatile Memory (NVM)
      4. 7.3.4 Power Consumption
    4. 7.4 Device Functional Modes
      1. 7.4.1 Voltage-Output Mode
        1. 7.4.1.1 Voltage Reference and DAC Transfer Function
          1. 7.4.1.1.1 Internal Reference
          2. 7.4.1.1.2 External Reference
          3. 7.4.1.1.3 Power-Supply as Reference
      2. 7.4.2 Current-Output Mode
      3. 7.4.3 Comparator Mode
        1. 7.4.3.1 Programmable Hysteresis Comparator
        2. 7.4.3.2 Programmable Window Comparator
      4. 7.4.4 Fault-Dump Mode
      5. 7.4.5 Application-Specific Modes
        1. 7.4.5.1 Voltage Margining and Scaling
          1. 7.4.5.1.1 High-Impedance Output and PROTECT Input
          2. 7.4.5.1.2 Programmable Slew-Rate Control
          3. 7.4.5.1.3 PMBus Compatibility Mode
        2. 7.4.5.2 Function Generation
          1. 7.4.5.2.1 Triangular Waveform Generation
          2. 7.4.5.2.2 Sawtooth Waveform Generation
          3. 7.4.5.2.3 Sine Waveform Generation
      6. 7.4.6 Device Reset and Fault Management
        1. 7.4.6.1 Power-On Reset (POR)
        2. 7.4.6.2 External Reset
        3. 7.4.6.3 Register-Map Lock
        4. 7.4.6.4 NVM Cyclic Redundancy Check (CRC)
          1. 7.4.6.4.1 NVM-CRC-FAIL-USER Bit
          2. 7.4.6.4.2 NVM-CRC-FAIL-INT Bit
      7. 7.4.7 Power-Down Mode
    5. 7.5 Programming
      1. 7.5.1 SPI Programming Mode
      2. 7.5.2 I2C Programming Mode
        1. 7.5.2.1 F/S Mode Protocol
        2. 7.5.2.2 I2C Update Sequence
          1. 7.5.2.2.1 Address Byte
          2. 7.5.2.2.2 Command Byte
        3. 7.5.2.3 I2C Read Sequence
      3. 7.5.3 General-Purpose Input/Output (GPIO) Modes
    6. 7.6 Register Map
      1. 7.6.1  NOP Register (address = 00h) [reset = 0000h]
      2. 7.6.2  DAC-X-MARGIN-HIGH Register (address = 01h, 07h, 0Dh, 13h) [reset = 0000h]
      3. 7.6.3  DAC-X-MARGIN-LOW Register (address = 02h, 08h, 0Eh, 14h) [reset = 0000h]
      4. 7.6.4  DAC-X-VOUT-CMP-CONFIG Register (address = 03h, 09h, 0Fh, 15h) [reset = 0000h]
      5. 7.6.5  DAC-X-IOUT-MISC-CONFIG Register (address = 04h, 0Ah, 10h, 16h) [reset = 0000h]
      6. 7.6.6  DAC-X-CMP-MODE-CONFIG Register (address = 05h, 0Bh, 11h, 17h) [reset = 0000h]
      7. 7.6.7  DAC-X-FUNC-CONFIG Register (address = 06h, 0Ch, 12h, 18h) [reset = 0000h]
      8. 7.6.8  DAC-X-DATA Register (address = 19h, 1Ah, 1Bh, 1Ch) [reset = 0000h]
      9. 7.6.9  COMMON-CONFIG Register (address = 1Fh) [reset = 0FFFh]
      10. 7.6.10 COMMON-TRIGGER Register (address = 20h) [reset = 0000h]
      11. 7.6.11 COMMON-DAC-TRIG Register (address = 21h) [reset = 0000h]
      12. 7.6.12 GENERAL-STATUS Register (address = 22h) [reset = 00h, DEVICE-ID, VERSION-ID]
      13. 7.6.13 CMP-STATUS Register (address = 23h) [reset = 0000h]
      14. 7.6.14 GPIO-CONFIG Register (address = 24h) [reset = 0000h]
      15. 7.6.15 DEVICE-MODE-CONFIG Register (address = 25h) [reset = 0000h]
      16. 7.6.16 INTERFACE-CONFIG Register (address = 26h) [reset = 0000h]
      17. 7.6.17 SRAM-CONFIG Register (address = 2Bh) [reset = 0000h]
      18. 7.6.18 SRAM-DATA Register (address = 2Ch) [reset = 0000h]
      19. 7.6.19 DAC-X-DATA-8BIT Register (address = 40h, 41h, 42h, 43h) [reset = 0000h]
      20. 7.6.20 BRDCAST-DATA Register (address = 50h) [reset = 0000h]
      21. 7.6.21 PMBUS-PAGE Register [reset = 0300h]
      22. 7.6.22 PMBUS-OP-CMD-X Register [reset = 0000h]
      23. 7.6.23 PMBUS-CML Register [reset = 0000h]
      24. 7.6.24 PMBUS-VERSION Register [reset = 2200h]
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
      3. 8.2.3 Application Curve
    3. 8.3 Power Supply Recommendations
    4. 8.4 Layout
      1. 8.4.1 Layout Guidelines
      2. 8.4.2 Layout Example
  9. Device and Documentation Support
    1. 9.1 Receiving Notification of Documentation Updates
    2. 9.2 Support Resources
    3. 9.3 Trademarks
    4. 9.4 Electrostatic Discharge Caution
    5. 9.5 Glossary
  10. 10Mechanical, Packaging, and Orderable Information

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • YBH|16
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Detailed Design Procedure

VSET is controlled by the DACx3004W to adjust the current output. RSET sets the output range of the current source. Choose a small VSET so that the power dissipation across RSET is minimum. Equation 10 calculates RSET.

Equation 10. RSET=VSETIOUT

A 0.6-V max VSET is used in this example. Equation 11 shows that RSET is calculated to be 3 Ω. Choose an RSET with a power rating of at least 120 mW.

Equation 11. RSET=0.6 V200 mA=3 Ω

Equation 12 shows how to calculate the DAC code for a given output voltage, reference, and gain setting.

Equation 12. DAC_DATA=VOUT×2NVREF×GAIN

Equation 13 calculates the DAC code for an output voltage, VSET, of 0.6V, the internal 1.21-V reference, and the 1.5 × gain setting.

Equation 13. DAC_DATA=0.6 V×2121.21 V×1.5=1354d 

The GPIO pin can be configured as an input to trigger the DACx3x04W output to turn on and off, which turns the current source on and off. Configure the GPIO in the GPIO-CONFIG register. The GPI-EN bit enables the GPIO pin as an input. The GPI-CH-SEL field selects which channels are controlled by the GPI. The GPI-CONFIG field selects the GPI function. Table 7-18 defines the functions for the GPI-CONFIG field. Choose the trigger margin-high or margin-low function if programmable slew is needed, or VOUT power up or down if programmable slew is not needed.

The programmable slew is configured by the CODE-STEP and SLEW-RATE fields in the DAC-X-FUNC-CONFIG Register. The programmable slew is only available when toggling between two values stored in the DAC-X-MARGIN-HIGH and DAC-X-MARGIN-LOW Registers. Section 7.4.5.1.2 discusses how to set the programmable slew. This application example uses a SLEW-RATE of 8 µV/s and a CODE-STEP of 8-LSB to achieve a 1.36-ms slew time.

The pseudo code for this application example is as follows:

//SYNTAX: WRITE <REGISTER NAME (Hex code)>, <MSB DATA>, <LSB DATA>
//Set gain setting to 1.5x internal reference (1.8 V) (repeat for all channels)
WRITE DAC-0-VOUT-CMP-CONFIG(0x3), 0x08, 0x00
//Power-up voltage output on all channels and enable the internal reference 
WRITE COMMON-CONFIG(0x1F),0x12, 0x49
//Configure GPI for Margin-High, Low trigger for all channels
WRITE GPIO-CONFIG(0x24), 0x01, 0xF5
//Set slew rate and code step (repeat for all channels)
//CODE_STEP: 8 LSB, SLEW_RATE: 8 µs/step
WRITE DAC-0-FUNC-CONFIG(0x06), 0x00, 0x52
//Write DAC margin high code (repeat for all channels)
//For a 1.8-V output range, the 12-bit hex code for 0.6 V is 0x54A. With 16-bit left alignment,
this becomes 0x54A0
WRITE DAC-0-MARGIN-HIGH(0x01), 0x54, 0xA0
//Write DAC margin low code (repeat for all channels)
//The 12-bit hex code for 0 V is 0x000. With 16-bit left alignment, this
becomes 0x0000
WRITE DAC-0-MARGIN-LOW(0x02), 0x00, 0x00
//Save settings to NVM
WRITE COMMON-TRIGGER(0x20), 0x00, 0x02