SLASF72 March   2023 DAC53004W

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  Recommended Operating Conditions
    4. 6.4  Thermal Information
    5. 6.5  Electrical Characteristics: Voltage Output
    6. 6.6  Electrical Characteristics: Current Output
    7. 6.7  Electrical Characteristics: Comparator Mode
    8. 6.8  Electrical Characteristics: General
    9. 6.9  Timing Requirements: I2C Standard Mode
    10. 6.10 Timing Requirements: I2C Fast Mode
    11. 6.11 Timing Requirements: I2C Fast Mode Plus
    12. 6.12 Timing Requirements: SPI Write Operation
    13. 6.13 Timing Requirements: SPI Read and Daisy Chain Operation (FSDO = 0)
    14. 6.14 Timing Requirements: SPI Read and Daisy Chain Operation (FSDO = 1)
    15. 6.15 Timing Requirements: GPIO
    16. 6.16 Timing Diagrams
    17. 6.17 Typical Characteristics: Voltage Output
    18. 6.18 Typical Characteristics: Current Output
    19. 6.19 Typical Characteristics: Comparator
    20. 6.20 Typical Characteristics: General
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Smart Digital-to-Analog Converter (DAC) Architecture
      2. 7.3.2 Digital Input/Output
      3. 7.3.3 Nonvolatile Memory (NVM)
      4. 7.3.4 Power Consumption
    4. 7.4 Device Functional Modes
      1. 7.4.1 Voltage-Output Mode
        1. 7.4.1.1 Voltage Reference and DAC Transfer Function
          1. 7.4.1.1.1 Internal Reference
          2. 7.4.1.1.2 External Reference
          3. 7.4.1.1.3 Power-Supply as Reference
      2. 7.4.2 Current-Output Mode
      3. 7.4.3 Comparator Mode
        1. 7.4.3.1 Programmable Hysteresis Comparator
        2. 7.4.3.2 Programmable Window Comparator
      4. 7.4.4 Fault-Dump Mode
      5. 7.4.5 Application-Specific Modes
        1. 7.4.5.1 Voltage Margining and Scaling
          1. 7.4.5.1.1 High-Impedance Output and PROTECT Input
          2. 7.4.5.1.2 Programmable Slew-Rate Control
          3. 7.4.5.1.3 PMBus Compatibility Mode
        2. 7.4.5.2 Function Generation
          1. 7.4.5.2.1 Triangular Waveform Generation
          2. 7.4.5.2.2 Sawtooth Waveform Generation
          3. 7.4.5.2.3 Sine Waveform Generation
      6. 7.4.6 Device Reset and Fault Management
        1. 7.4.6.1 Power-On Reset (POR)
        2. 7.4.6.2 External Reset
        3. 7.4.6.3 Register-Map Lock
        4. 7.4.6.4 NVM Cyclic Redundancy Check (CRC)
          1. 7.4.6.4.1 NVM-CRC-FAIL-USER Bit
          2. 7.4.6.4.2 NVM-CRC-FAIL-INT Bit
      7. 7.4.7 Power-Down Mode
    5. 7.5 Programming
      1. 7.5.1 SPI Programming Mode
      2. 7.5.2 I2C Programming Mode
        1. 7.5.2.1 F/S Mode Protocol
        2. 7.5.2.2 I2C Update Sequence
          1. 7.5.2.2.1 Address Byte
          2. 7.5.2.2.2 Command Byte
        3. 7.5.2.3 I2C Read Sequence
      3. 7.5.3 General-Purpose Input/Output (GPIO) Modes
    6. 7.6 Register Map
      1. 7.6.1  NOP Register (address = 00h) [reset = 0000h]
      2. 7.6.2  DAC-X-MARGIN-HIGH Register (address = 01h, 07h, 0Dh, 13h) [reset = 0000h]
      3. 7.6.3  DAC-X-MARGIN-LOW Register (address = 02h, 08h, 0Eh, 14h) [reset = 0000h]
      4. 7.6.4  DAC-X-VOUT-CMP-CONFIG Register (address = 03h, 09h, 0Fh, 15h) [reset = 0000h]
      5. 7.6.5  DAC-X-IOUT-MISC-CONFIG Register (address = 04h, 0Ah, 10h, 16h) [reset = 0000h]
      6. 7.6.6  DAC-X-CMP-MODE-CONFIG Register (address = 05h, 0Bh, 11h, 17h) [reset = 0000h]
      7. 7.6.7  DAC-X-FUNC-CONFIG Register (address = 06h, 0Ch, 12h, 18h) [reset = 0000h]
      8. 7.6.8  DAC-X-DATA Register (address = 19h, 1Ah, 1Bh, 1Ch) [reset = 0000h]
      9. 7.6.9  COMMON-CONFIG Register (address = 1Fh) [reset = 0FFFh]
      10. 7.6.10 COMMON-TRIGGER Register (address = 20h) [reset = 0000h]
      11. 7.6.11 COMMON-DAC-TRIG Register (address = 21h) [reset = 0000h]
      12. 7.6.12 GENERAL-STATUS Register (address = 22h) [reset = 00h, DEVICE-ID, VERSION-ID]
      13. 7.6.13 CMP-STATUS Register (address = 23h) [reset = 0000h]
      14. 7.6.14 GPIO-CONFIG Register (address = 24h) [reset = 0000h]
      15. 7.6.15 DEVICE-MODE-CONFIG Register (address = 25h) [reset = 0000h]
      16. 7.6.16 INTERFACE-CONFIG Register (address = 26h) [reset = 0000h]
      17. 7.6.17 SRAM-CONFIG Register (address = 2Bh) [reset = 0000h]
      18. 7.6.18 SRAM-DATA Register (address = 2Ch) [reset = 0000h]
      19. 7.6.19 DAC-X-DATA-8BIT Register (address = 40h, 41h, 42h, 43h) [reset = 0000h]
      20. 7.6.20 BRDCAST-DATA Register (address = 50h) [reset = 0000h]
      21. 7.6.21 PMBUS-PAGE Register [reset = 0300h]
      22. 7.6.22 PMBUS-OP-CMD-X Register [reset = 0000h]
      23. 7.6.23 PMBUS-CML Register [reset = 0000h]
      24. 7.6.24 PMBUS-VERSION Register [reset = 2200h]
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
      3. 8.2.3 Application Curve
    3. 8.3 Power Supply Recommendations
    4. 8.4 Layout
      1. 8.4.1 Layout Guidelines
      2. 8.4.2 Layout Example
  9. Device and Documentation Support
    1. 9.1 Receiving Notification of Documentation Updates
    2. 9.2 Support Resources
    3. 9.3 Trademarks
    4. 9.4 Electrostatic Discharge Caution
    5. 9.5 Glossary
  10. 10Mechanical, Packaging, and Orderable Information

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • YBH|16
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Smart Digital-to-Analog Converter (DAC) Architecture

The DACx3004W devices consist of string architecture with a voltage-output amplifier and an external FB pin and voltage-to-current converter for each channel. Section 7.2 shows the DAC architecture within the block diagram, which operates from a 1.8-V to 5.5-V power supply. The DAC has an internal voltage reference of 1.21 V. There is an option to select an external reference on the VREF pin or the power supply as a reference. The voltage output mode uses one of these three reference options. The current output mode uses an internal band gap to generate the current outputs. Both the voltage- and current-output modes support multiple programmable output ranges.

The DACx3004W devices support Hi-Z output when VDD is off, maintaining very low leakage current at the output pins with up to 1.25 V of forced voltage. The DAC output pin also starts up in high-impedance mode by default, making these devices an excellent choice for voltage margining and scaling applications. To change the power-up mode to 10 kΩ-GND or 100 kΩ-GND, program the corresponding VOUT-PDN-X field in the COMMON-CONFIG register and load these bits in the device NVM.

The DACx3004W devices support an independent comparator mode for each channel. The respective FBx pins act as the inputs for the comparator. The DAC architecture supports inversion of the comparator output using register settings. The comparator outputs can be push-pull or open-drain. The comparator mode supports programmable hysteresis using margin-high and margin-low register fields, latching comparator, and window comparator. The comparator outputs are accessible internally by the device.

The DACx3004W devices include a smart feature set to enable processor-less operation and high-integration. The NVM enables a predictable start-up. The GPIO triggers the DAC output without the I2C interface in the absence of a processor or when the processor or software fails. The integrated functions and the FBx pin enable PWM output for control applications. The FBx pin enables this device to be used as a programmable comparator. The digital slew-rate control and the Hi-Z power-down modes enable a hassle-free voltage margining and scaling function.