SLASEH2A November 2020 – May 2021 DAC61404 , DAC81404
PRODUCTION DATA
The SENSEPx pins are provided to enable sensing of the load by connecting to points electrically closer to the load. This configuration allows the internal output amplifier to make sure that the correct voltage is applied across the load, as long as headroom is available on the power supply. The SENSEPx pins are used to correct for resistive drops on the system board, and are connected to VOUTX at the pins. In some cases, both VOUTX and VSENSEPX are brought out through separate lines and connected remotely together at the load. In such cases, if the VSENSEPX line is cut, then the amplifier loop is broken; use a 5-kΩ resistor between the OUTx and SENSEPx pins to maintain proper amplifier operation.
The SENSENx pins are provided as remote ground sense reference outputs from the internal VOUTX amplifier. The output swing of the VOUTX amplifier is relative to the voltage seen at these pins. The voltage difference between VSENSENX and the device ground must be lower than ±12 V.
At device start up, the power-on-reset circuit makes sure that all registers are at default values. The voltage output buffer is in a Hi-Z state; however, the SENSEPx pins connect to the amplifier inputs through an internal 40-kΩ feedback resistor (Figure 8-3). If the OUTx and SENSEPx pins are connected together, the OUTx pins are also connected to the same node through the feedback resistor. This node is protected by internal circuitry and settles to a value between GND and the reference input.