DLPS176A April   2019  – September 2019 DLP3034-Q1

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
    1.     Device Images
      1.      DLP DLP3034-Q1 Block System Diagram
  4. Revision History
  5. Pin Configuration and Functions
    1.     Pin Configurations and Functions
  6. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  Storage Conditions
    3. 6.3  ESD Ratings
    4. 6.4  Recommended Operating Conditions
    5. 6.5  Thermal Information
    6. 6.6  Electrical Characteristics
    7. 6.7  Timing Requirements
    8. 6.8  Switching Characteristics
    9. 6.9  System Mounting Interface Loads
    10. 6.10 Physical Characteristics of the Micromirror Array
    11. 6.11 Micromirror Array Optical Characteristics
    12. 6.12 Window Characteristics
    13. 6.13 Chipset Component Usage Specification
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Micromirror Array
      2. 7.3.2 Double Data Rate (DDR) Interface
      3. 7.3.3 Micromirror Switching Control
      4. 7.3.4 DMD Voltage Supplies
      5. 7.3.5 Logic Reset
      6. 7.3.6 Temperature Sensing Diode
        1. 7.3.6.1 Temperature Sense Diode Theory
      7. 7.3.7 DMD JTAG Interface
    4. 7.4 System Optical Considerations
      1. 7.4.1 Numerical Aperture and Stray Light Control
      2. 7.4.2 Pupil Match
      3. 7.4.3 Illumination Overfill and Alignment
    5. 7.5 Micromirror Array Temperature Calculation
    6. 7.6 Micromirror Landed-On/Landed-Off Duty Cycle
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
    3. 8.3 Application Mission Profile Consideration
    4. 8.4 Illumination Mission Profile Considerations
  9. Power Supply Recommendations
    1. 9.1 Power Supply Sequencing Requirements
      1. 9.1.1 Power Up and Power Down
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Temperature Diode Pins
    3. 10.3 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Device Support
      1. 11.1.1 Device Nomenclature
      2. 11.1.2 Device Markings
    2. 11.2 Documentation Support
      1. 11.2.1 Related Documentation
    3. 11.3 Receiving Notification of Documentation Updates
    4. 11.4 Community Resources
    5. 11.5 Trademarks
    6. 11.6 Electrostatic Discharge Caution
    7. 11.7 Device Handling
    8. 11.8 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Power Supply Sequencing Requirements

  • VBIAS, VCC, VOFFSET, VREF, VRESET, VSS are required to operate the DMD.

CAUTION

  • For reliable operation of the DMD, the following power supply sequencing requirements must be followed. Failure to adhere to the prescribed power up and power down procedures may affect device reliability.
  • The VCC, VREF, VOFFSET, VBIAS, and VRESET power supplies have to be coordinated during power up and power down operations. Failure to meet any of the below requirements will result in a significant reduction in the DMD’s reliability and lifetime. Refer to Figure 19. VSS must also be connected.

DMD Power Supply Power Up Procedure:

  • During power up, VCC and VREF must always start and settle before VOFFSET, VBIAS and VRESET voltages are applied to the DMD.
  • During power up, VBIAS does not have to start after VOFFSET. However, it is a strict requirement that the delta between VBIAS and VOFFSET must be within ±8.75 V (refer to Note 1 for Figure 19).
  • During power up, the DMD’s LVCMOS input pins shall not be driven high until after VCC and VREF have settled at operating voltage.
  • During power up, there is no requirement for the relative timing of VRESET with respect to VOFFSET and VBIAS.
  • Power supply slew rates during power up are flexible, provided that the transient voltage levels follow the requirements listed above and in Recommended Operating Conditions and in Figure 19.

DMD Power Supply Power Down Procedure

  • VCC and VREF must be supplied until after VBIAS, VRESET and VOFFSET are discharged to within 4 V of ground.
  • During power down it is not mandatory to stop driving VBIAS prior to VOFFSET, but it is a strict requirement that the delta between VBIAS and VOFFSET must be within ± 8.75 V (refer to Note 1 for Figure 19).
  • During power down, the DMD’s LVCMOS input pins must be less than VREF + 0.3 V.
  • During power down, there is no requirement for the relative timing of VRESET with respect to VOFFSET and VBIAS.
  • Power supply slew rates during power down are flexible, provided that the transient voltage levels follow the requirements listed above in Recommended Operating Conditions and in Figure 19.