DLPS240A June   2024  – August 2024 DLPA3085

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics
    6. 5.6 SPI Timing Parameters
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Description
    3. 6.3 Feature Description
      1. 6.3.1 Supply and Monitoring
        1. 6.3.1.1 Supply
        2. 6.3.1.2 Monitoring
          1. 6.3.1.2.1 Block Faults
          2. 6.3.1.2.2 Auto LED Turn-Off Functionality
          3. 6.3.1.2.3 Thermal Protection
      2. 6.3.2 Illumination
        1. 6.3.2.1 Programmable Gain Block
        2. 6.3.2.2 LDO Illumination
        3. 6.3.2.3 Illumination Driver A
        4. 6.3.2.4 RGB Strobe Decoder
          1. 6.3.2.4.1 Break Before Make (BBM)
          2. 6.3.2.4.2 Openloop Voltage
          3. 6.3.2.4.3 Transient Current Limit
        5. 6.3.2.5 Illumination Monitoring
          1. 6.3.2.5.1 Power Good
          2. 6.3.2.5.2 Ratio Metric Overvoltage Protection
        6. 6.3.2.6 Illumination Driver Plus Power FETs Efficiency
      3. 6.3.3 External Power FET Selection
        1. 6.3.3.1 Threshold Voltage
        2. 6.3.3.2 Gate Charge and Gate Timing
        3. 6.3.3.3 RDS(ON)
      4. 6.3.4 DMD Supplies
        1. 6.3.4.1 LDO DMD
        2. 6.3.4.2 DMD HV Regulator
        3. 6.3.4.3 DMD/DLPC Buck Converters
        4. 6.3.4.4 DMD Monitoring
          1. 6.3.4.4.1 Power Good
          2. 6.3.4.4.2 Overvoltage Fault
      5. 6.3.5 Buck Converters
        1. 6.3.5.1 LDO Bucks
        2. 6.3.5.2 General Purpose Buck Converters
        3. 6.3.5.3 Buck Converter Monitoring
          1. 6.3.5.3.1 Power Good
          2. 6.3.5.3.2 Overvoltage Fault
        4. 6.3.5.4 Buck Converter Efficiency
      6. 6.3.6 Auxiliary LDOs
      7. 6.3.7 Measurement System
    4. 6.4 Device Functional Modes
    5. 6.5 Programming
      1. 6.5.1 SPI
      2. 6.5.2 Interrupt
      3. 6.5.3 Fast-Shutdown in Case of Fault
    6. 6.6 Register Maps
  8. Application and Implementation
    1. 7.1 Application Information
    2. 7.2 Typical Application
      1. 7.2.1 Design Requirements
      2. 7.2.2 Detailed Design Procedure
        1. 7.2.2.1 Component Selection for General-Purpose Buck Converter
      3. 7.2.3 Application Curve
    3. 7.3 System Example With DLPA3085 Internal Block Diagram
  9. Power Supply Recommendations
    1. 8.1 Power-Up and Power-Down Timing
  10. Layout
    1. 9.1 Layout Guidelines
      1. 9.1.1 SPI Connections
      2. 9.1.2 RLIM Routing
      3. 9.1.3 LED Connection
    2. 9.2 Layout Example
    3. 9.3 Thermal Considerations
  11. 10Device and Documentation Support
    1. 10.1 Third-Party Products Disclaimer
    2. 10.2 Device Support
      1. 10.2.1 Device Nomenclature
    3. 10.3 Receiving Notification of Documentation Updates
    4. 10.4 Support Resources
    5. 10.5 Trademarks
    6. 10.6 Electrostatic Discharge Caution
    7. 10.7 Glossary
  12. 11Revision History
  13. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Device Functional Modes

Table 6-4 Modes of Operation
MODEDESCRIPTION
OFFThis is the lowest-power mode of operation. All power functions are turned off, registers are reset to their default values, and the IC does not respond to SPI commands. RESET_Z pin is pulled low. The IC will enter OFF mode whenever the PROJ_ON pin is low.
WAITThe DMD regulators and LED power (VLED) are turned off, but the IC does respond to the SPI. The device enters WAIT mode whenever PROJ_ON is set high, DMD_EN(1) bit is set to 0 or a FAULT is resolved.
STANDBYThe device also enters STANDBY mode when a fault condition is detected(2). (See Section 6.5.2). Once the fault condition is resolved, WAIT mode is entered.
ACTIVE1The DMD supplies are enabled but LED power (VLED) is disabled. PROJ_ON pin must be high, DMD_EN bit must be set to 1, and ILLUM_EN(3) bit is set to 0.
ACTIVE2DMD supplies and LED power are enabled. PROJ_ON pin must be high and DMD_EN and ILLUM_EN bits must both be set to 1.
Settings can be done through Enable register, bit DMD_EN.
Power-good faults, overvoltage, overtemperature shutdown, and undervoltage lockout.
Settings can be done through Enable register, bit ILLUM_EN.
Table 6-5 Device State as a Function of Control-Pin Status
PROJ_ON PinSTATE
LOWOFF
HIGHWAIT
STANDBY
ACTIVE1
ACTIVE2
(Device state depends on DMD_EN and ILLUM_EN bits and whether there are any fault conditions.)
DLPA3085 State Diagram
|| = OR, & = AND
FAULT = Undervoltage on any supply, thermal shutdown, or UVLO detection
UVLO detection, per the diagram, causes the DLPA3085 to go into the standby state. This is not the lowest power state. If lower power is desired, PROJ_ON should be set low.
DMD_EN register bit can be reset or set by SPI writes. DMD_EN defaults to 0 when PROJ_ON goes from low to high and then the DLPC ASIC software automatically sets it to 1. Also, FAULT = 1 causes the DMD_EN register bit to be reset.
D_CORE_EN is a signal internal to the DLPA3085. This signal turns on the VCORE regulator.
Figure 6-19 State Diagram