DLPS048C March   2015  – June 2019 DLPC150

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
    1.     Device Images
      1.      DLP 0.2-Inch WVGA Chipset
  4. Revision History
  5. Pin Configuration and Functions
    1.     Pin Functions
    2. 5.1 DLPC150 Mechanical Data
      1. Table 1. I/O Type Subscript Definition
      2. Table 2. Internal Pullup and Pulldown Characteristics
  6. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  Recommended Operating Conditions
    4. 6.4  Thermal Information
    5. 6.5  Electrical Characteristics Over Recommended Operating Conditions
    6. 6.6  Electrical Characteristics
    7. 6.7  High-Speed Sub-LVDS Electrical Characteristics
    8. 6.8  Low-Speed SDR Electrical Characteristics
    9. 6.9  System Oscillators Timing Requirements
    10. 6.10 Power-Up and Reset Timing Requirements
    11. 6.11 Parallel Interface Frame Timing Requirements
    12. 6.12 Parallel Interface General Timing Requirements
    13. 6.13 Flash Interface Timing Requirements
  7. Parameter Measurement Information
    1. 7.1 Host_irq Usage Model
    2. 7.2 Input Source
      1. 7.2.1 Parallel Interface Supports Two Data Transfer Formats
        1. 7.2.1.1 Pdata Bus – Parallel Interface Bit Mapping Modes
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Interface Timing Requirements
        1. 8.3.1.1 Parallel Interface
      2. 8.3.2 Serial Flash Interface
      3. 8.3.3 Serial Flash Programming
      4. 8.3.4 I2C Control Interface
      5. 8.3.5 DMD (Sub-LVDS) Interface
      6. 8.3.6 Calibration And Debug Support
      7. 8.3.7 DMD Interface Considerations
    4. 8.4 Device Functional Modes
  9. Application and Implementation
    1. 9.1 Application Information
      1. 9.1.1 DLPC150 System Design Consideration – Application Notes
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 DLPC150 System Interfaces
          1. 9.2.2.1.1 Control Interface
      3. 9.2.3 Application Curve
  10. 10Power Supply Recommendations
    1. 10.1 System Power-Up and Power-Down Sequence
    2. 10.2 DLPC150 Power-Up Initialization Sequence
    3. 10.3 DMD Fast Park Control (PARKZ)
    4. 10.4 Hot Plug Usage
    5. 10.5 Maximum Signal Transition Time
  11. 11Layout
    1. 11.1 Layout Guidelines
      1. 11.1.1 PCB Layout Guidelines For Internal Controller PLL Power
      2. 11.1.2 DLPC150 Reference Clock
        1. 11.1.2.1 Recommended Crystal Oscillator Configuration
      3. 11.1.3 General PCB Recommendations
      4. 11.1.4 General Handling Guidelines for Unused CMOS-Type Pins
      5. 11.1.5 Maximum Pin-to-Pin, PCB Interconnects Etch Lengths
      6. 11.1.6 Number of Layer Changes
      7. 11.1.7 Stubs
      8. 11.1.8 Terminations
      9. 11.1.9 Routing Vias
    2. 11.2 Layout Example
    3. 11.3 Thermal Considerations
  12. 12Device and Documentation Support
    1. 12.1 Device Support
      1. 12.1.1 Device Nomenclature
        1. 12.1.1.1 Device Markings
    2. 12.2 Related Links
    3. 12.3 Community Resources
    4. 12.4 Trademarks
    5. 12.5 Electrostatic Discharge Caution
    6. 12.6 Glossary
  13. 13Mechanical, Packaging, and Orderable Information
    1. 13.1 Package Option Addendum
      1. 13.1.1 Packaging Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)

General Handling Guidelines for Unused CMOS-Type Pins

To avoid potentially damaging current caused by floating CMOS input-only pins, TI recommends that unused DLPC150 controller input pins be tied through a pullup resistor to its associated power supply or a pulldown to ground. For DLPC150 controller inputs with an internal pullup or pulldown resistors, it is unnecessary to add an external pullup or pulldown unless specifically recommended. Note that internal pullup and pulldown resistors are weak and should not be expected to drive the external line. The DLPC150 implements very few internal resistors and these are noted in the pin list. When external pullup or pulldown resistors are needed for pins that have built-in weak pullups or pulldowns, use the value 8 kΩ (max).

Unused output-only pins should never be tied directly to power or ground, but can be left open.

When possible, TI recommends that unused bidirectional I/O pins be configured to their output state such that the pin can be left open. If this control is not available and the pins may become an input, then they should be pulled-up (or pulled-down) using an appropriate, dedicated resistor.