DLPS156F January   2019  – November 2024 DLPC3436

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
    1. 4.1 Test Pins and General Control
    2. 4.2 Parallel Port Input
    3. 4.3 DSI Input Data and Clock
    4. 4.4 DMD Reset and Bias Control
    5. 4.5 DMD SubLVDS Interface
    6. 4.6 Peripheral Interface
    7. 4.7 GPIO Peripheral Interface
    8. 4.8 Clock and PLL Support
    9. 4.9 Power and Ground
  6. Specifications
    1. 5.1  Absolute Maximum Ratings
    2. 5.2  ESD Ratings
    3. 5.3  Recommended Operating Conditions
    4. 5.4  Thermal Information
    5. 5.5  Power Electrical Characteristics
    6. 5.6  Pin Electrical Characteristics
    7. 5.7  Internal Pullup and Pulldown Electrical Characteristics
    8. 5.8  DMD SubLVDS Interface Electrical Characteristics
    9. 5.9  DMD Low-Speed Interface Electrical Characteristics
    10. 5.10 System Oscillator Timing Requirements
    11. 5.11 Power Supply and Reset Timing Requirements
    12. 5.12 Parallel Interface Frame Timing Requirements
    13. 5.13 Parallel Interface General Timing Requirements
    14. 5.14 Flash Interface Timing Requirements
    15. 5.15 Other Timing Requirements
    16. 5.16 DMD SubLVDS Interface Switching Characteristics
    17. 5.17 DMD Parking Switching Characteristics
    18. 5.18 Chipset Component Usage Specification
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1 Input Source Requirements
        1. 6.3.1.1 Input Frame Rates and 3-D Display Operation
          1. 6.3.1.1.1 Parallel Interface Data Transfer Format
        2. 6.3.1.2 3D Display
      2. 6.3.2 Device Startup
      3. 6.3.3 SPI Flash
        1. 6.3.3.1 SPI Flash Interface
        2. 6.3.3.2 SPI Flash Programming
      4. 6.3.4 I2C Interface
      5. 6.3.5 Content Adaptive Illumination Control (CAIC)
      6. 6.3.6 Local Area Brightness Boost (LABB)
      7. 6.3.7 3D Glasses Operation
      8. 6.3.8 Test Point Support
      9. 6.3.9 DMD Interface
        1. 6.3.9.1 SubLVDS (HS) Interface
    4. 6.4 Device Functional Modes
    5. 6.5 Programming
  8. Application and Implementation
    1. 7.1 Application Information
    2. 7.2 Typical Application
      1. 7.2.1 Design Requirements
      2. 7.2.2 Detailed Design Procedure
      3. 7.2.3 Application Curve
  9. Power Supply Recommendations
    1. 8.1 PLL Design Considerations
    2. 8.2 System Power-Up and Power-Down Sequence
    3. 8.3 Power-Up Initialization Sequence
    4. 8.4 DMD Fast Park Control (PARKZ)
    5. 8.5 Hot Plug I/O Usage
    6. 8.6 Maximum Signal Transition Time
  10. Layout
    1. 9.1 Layout Guidelines
      1. 9.1.1 PLL Power Layout
      2. 9.1.2 Reference Clock Layout
        1. 9.1.2.1 Recommended Crystal Oscillator Configuration
      3. 9.1.3 Unused Pins
      4. 9.1.4 DMD Control and SubLVDS Signals
      5. 9.1.5 Layer Changes
      6. 9.1.6 Stubs
      7. 9.1.7 Terminations
      8. 9.1.8 Routing Vias
      9. 9.1.9 Thermal Considerations
    2. 9.2 Layout Example
  11. 10Device and Documentation Support
    1. 10.1 Device Support
      1. 10.1.1 Third-Party Products Disclaimer
      2. 10.1.2 Device Nomenclature
        1. 10.1.2.1 Device Markings DLPC343x
        2. 10.1.2.2 Device Markings DLPC342x
        3. 10.1.2.3 Video Timing Parameter Definitions
    2. 10.2 Documentation Support
      1. 10.2.1 Related Documentation
    3. 10.3 Related Links
    4. 10.4 Receiving Notification of Documentation Updates
    5. 10.5 Support Resources
    6. 10.6 Trademarks
    7. 10.7 Electrostatic Discharge Caution
    8. 10.8 Glossary
  12. 11Revision History
  13. 12Mechanical, Packaging, and Orderable Information
    1. 12.1 Package Option Addendum
      1. 12.1.1 Packaging Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

DMD Fast Park Control (PARKZ)

PARKZ is an input early warning signal that must alert the controller at least 32µs before DC supply voltages drop below specifications. Typically, the PARKZ signal is provided by the DLPAxxxx interrupt output signal. PARKZ must be deasserted (set high) prior to releasing RESETZ (that is, prior to the low-to-high transition on the RESETZ input) for normal operation. When PARKZ is asserted (set low) the controller performs a Fast Park operation on the DMD which assists in maintaining the lifetime of the DMD. The reference clock must continue running and RESETZ must remain deactivated for at least 32µs after PARKZ has been asserted (set low) to allow the park operation to complete.

Fast Park operation is only intended for use when loss of power is imminent and beyond the control of the host processor (for example, when the external power source has been disconnected or the battery has dropped below a minimum level). The longest lifetime of the DMD may not be achieved with Fast Park operation. The longest lifetime is achieved with a Normal Park operation (initiated through GPIO_08). Thus, PARKZ is typically only used instead of a Normal Park request if there is not enough time for a Normal Park. A Normal Park operation takes much longer than 32µs to park the mirrors. During a Normal Park operation, the DLPAxxxx keeps on all power supplies, and keeps RESETZ high, until the longer mirror parking has completed. Additionally, the DLPAxxxx may hold the supplies on for a period of time after the parking has been completed. View the relevant DLPAxxxx datasheet for more information. The longer mirror parking time maintains the longest DMD lifetime and reliability. DMD Parking Switching Characteristics specifies the park timings.