DLPS156F January   2019  – November 2024 DLPC3436

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
    1. 4.1 Test Pins and General Control
    2. 4.2 Parallel Port Input
    3. 4.3 DSI Input Data and Clock
    4. 4.4 DMD Reset and Bias Control
    5. 4.5 DMD SubLVDS Interface
    6. 4.6 Peripheral Interface
    7. 4.7 GPIO Peripheral Interface
    8. 4.8 Clock and PLL Support
    9. 4.9 Power and Ground
  6. Specifications
    1. 5.1  Absolute Maximum Ratings
    2. 5.2  ESD Ratings
    3. 5.3  Recommended Operating Conditions
    4. 5.4  Thermal Information
    5. 5.5  Power Electrical Characteristics
    6. 5.6  Pin Electrical Characteristics
    7. 5.7  Internal Pullup and Pulldown Electrical Characteristics
    8. 5.8  DMD SubLVDS Interface Electrical Characteristics
    9. 5.9  DMD Low-Speed Interface Electrical Characteristics
    10. 5.10 System Oscillator Timing Requirements
    11. 5.11 Power Supply and Reset Timing Requirements
    12. 5.12 Parallel Interface Frame Timing Requirements
    13. 5.13 Parallel Interface General Timing Requirements
    14. 5.14 Flash Interface Timing Requirements
    15. 5.15 Other Timing Requirements
    16. 5.16 DMD SubLVDS Interface Switching Characteristics
    17. 5.17 DMD Parking Switching Characteristics
    18. 5.18 Chipset Component Usage Specification
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1 Input Source Requirements
        1. 6.3.1.1 Input Frame Rates and 3-D Display Operation
          1. 6.3.1.1.1 Parallel Interface Data Transfer Format
        2. 6.3.1.2 3D Display
      2. 6.3.2 Device Startup
      3. 6.3.3 SPI Flash
        1. 6.3.3.1 SPI Flash Interface
        2. 6.3.3.2 SPI Flash Programming
      4. 6.3.4 I2C Interface
      5. 6.3.5 Content Adaptive Illumination Control (CAIC)
      6. 6.3.6 Local Area Brightness Boost (LABB)
      7. 6.3.7 3D Glasses Operation
      8. 6.3.8 Test Point Support
      9. 6.3.9 DMD Interface
        1. 6.3.9.1 SubLVDS (HS) Interface
    4. 6.4 Device Functional Modes
    5. 6.5 Programming
  8. Application and Implementation
    1. 7.1 Application Information
    2. 7.2 Typical Application
      1. 7.2.1 Design Requirements
      2. 7.2.2 Detailed Design Procedure
      3. 7.2.3 Application Curve
  9. Power Supply Recommendations
    1. 8.1 PLL Design Considerations
    2. 8.2 System Power-Up and Power-Down Sequence
    3. 8.3 Power-Up Initialization Sequence
    4. 8.4 DMD Fast Park Control (PARKZ)
    5. 8.5 Hot Plug I/O Usage
    6. 8.6 Maximum Signal Transition Time
  10. Layout
    1. 9.1 Layout Guidelines
      1. 9.1.1 PLL Power Layout
      2. 9.1.2 Reference Clock Layout
        1. 9.1.2.1 Recommended Crystal Oscillator Configuration
      3. 9.1.3 Unused Pins
      4. 9.1.4 DMD Control and SubLVDS Signals
      5. 9.1.5 Layer Changes
      6. 9.1.6 Stubs
      7. 9.1.7 Terminations
      8. 9.1.8 Routing Vias
      9. 9.1.9 Thermal Considerations
    2. 9.2 Layout Example
  11. 10Device and Documentation Support
    1. 10.1 Device Support
      1. 10.1.1 Third-Party Products Disclaimer
      2. 10.1.2 Device Nomenclature
        1. 10.1.2.1 Device Markings DLPC343x
        2. 10.1.2.2 Device Markings DLPC342x
        3. 10.1.2.3 Video Timing Parameter Definitions
    2. 10.2 Documentation Support
      1. 10.2.1 Related Documentation
    3. 10.3 Related Links
    4. 10.4 Receiving Notification of Documentation Updates
    5. 10.5 Support Resources
    6. 10.6 Trademarks
    7. 10.7 Electrostatic Discharge Caution
    8. 10.8 Glossary
  12. 11Revision History
  13. 12Mechanical, Packaging, and Orderable Information
    1. 12.1 Package Option Addendum
      1. 12.1.1 Packaging Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Device Startup

  • The HOST_IRQ signal is provided to indicate when the system has completed auto-initialization.
  • While reset is applied, HOST_IRQ is tristated (an external pullup resistor pulls the line high).
  • HOST_IRQ remains tristated (pulled high externally) until the boot process completes. While the signal is pulled high, this indicates that the controller is performing boot-up and auto-initialization.
  • As soon as possible after the controller boots up, the controller drives HOST_IRQ to a logic high state to indicate that the controller is continuing to perform auto-initialization (no real state changes occur on the external signal).
  • The software sets HOST_IRQ to a logic-low state at the completion of the auto-initialization process. At the falling edge of the signal, the initialization is complete.
  • The DLPC34x6 controller is ready to receive commands through I2C or accept video over the parallel interface only after auto-initialization is complete.
  • The controller initialization typically completes (HOST_IRQ goes low) within 2.94s of RESETZ being asserted. However, this time may vary (typically up to 0.3s) depending on the software version and the contents of the user-configurable auto-initialization file.
DLPC3436 HOST_IRQ Timing
t0: rising edge of RESETZ; auto-initialization begins.
t1: falling edge of HOST_IRQ; auto-initialization is complete.
Figure 6-4 HOST_IRQ Timing