SNLS676 May   2022 DP83TC813R-Q1 , DP83TC813S-Q1

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Timing Requirements
    7. 7.7 Timing Diagrams
    8. 7.8 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Diagnostic Tool Kit
        1. 8.3.1.1 Signal Quality Indicator
        2. 8.3.1.2 Electrostatic Discharge Sensing
        3. 8.3.1.3 Time Domain Reflectometry
        4. 8.3.1.4 Voltage Sensing
        5. 8.3.1.5 BIST and Loopback Modes
          1. 8.3.1.5.1 Data Generator and Checker
          2. 8.3.1.5.2 xMII Loopback
          3. 8.3.1.5.3 PCS Loopback
          4. 8.3.1.5.4 Digital Loopback
          5. 8.3.1.5.5 Analog Loopback
          6. 8.3.1.5.6 Reverse Loopback
      2. 8.3.2 Compliance Test Modes
        1. 8.3.2.1 Test Mode 1
        2. 8.3.2.2 Test Mode 2
        3. 8.3.2.3 Test Mode 4
        4. 8.3.2.4 Test Mode 5
    4. 8.4 Device Functional Modes
      1. 8.4.1  Power Down
      2. 8.4.2  Reset
      3. 8.4.3  Standby
      4. 8.4.4  Normal
      5. 8.4.5  Sleep Ack
      6. 8.4.6  Sleep Request
      7. 8.4.7  Sleep Fail
      8. 8.4.8  Sleep
      9. 8.4.9  Wake-Up
      10. 8.4.10 TC10 System Example
      11. 8.4.11 Media Dependent Interface
        1. 8.4.11.1 100BASE-T1 Master and 100BASE-T1 Slave Configuration
        2. 8.4.11.2 Auto-Polarity Detection and Correction
        3. 8.4.11.3 Jabber Detection
        4. 8.4.11.4 Interleave Detection
      12. 8.4.12 MAC Interfaces
        1. 8.4.12.1 Media Independent Interface
        2. 8.4.12.2 Reduced Media Independent Interface
        3. 8.4.12.3 Reduced Gigabit Media Independent Interface
        4. 8.4.12.4 Serial Gigabit Media Independent Interface
      13. 8.4.13 Serial Management Interface
      14. 8.4.14 Direct Register Access
      15. 8.4.15 Extended Register Space Access
      16. 8.4.16 Write Address Operation
        1. 8.4.16.1 MMD1 - Write Address Operation
      17. 8.4.17 Read Address Operation
        1. 8.4.17.1 MMD1 - Read Address Operation
      18. 8.4.18 Write Operation (No Post Increment)
        1. 8.4.18.1 MMD1 - Write Operation (No Post Increment)
      19. 8.4.19 Read Operation (No Post Increment)
        1. 8.4.19.1 MMD1 - Read Operation (No Post Increment)
      20. 8.4.20 Write Operation (Post Increment)
        1. 8.4.20.1 MMD1 - Write Operation (Post Increment)
      21. 8.4.21 Read Operation (Post Increment)
        1. 8.4.21.1 MMD1 - Read Operation (Post Increment)
    5. 8.5 Programming
      1. 8.5.1 Strap Configuration
      2. 8.5.2 LED Configuration
      3. 8.5.3 PHY Address Configuration
    6. 8.6 Register Maps
      1. 8.6.1 Register Access Summary
      2. 8.6.2 DP83TC813 Registers
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Applications
      1. 9.2.1 Design Requirements
        1. 9.2.1.1 Physical Medium Attachment
          1. 9.2.1.1.1 Common-Mode Choke Recommendations
      2. 9.2.2 Detailed Design Procedure
      3. 9.2.3 Application Curves
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
      1. 11.1.1 Signal Traces
      2. 11.1.2 Return Path
      3. 11.1.3 Metal Pour
      4. 11.1.4 PCB Layer Stacking
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Receiving Notification of Documentation Updates
    2. 12.2 Support Resources
    3. 12.3 Community Resources
    4. 12.4 Trademarks
    5. 12.5 Electrostatic Discharge Caution
    6. 12.6 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Serial Management Interface

The Serial Management Interface (SMI) provides access to the DP83TC813S-Q1 internal register space for status information and configuration. The SMI frames and base registers are compatible with IEEE 802.3 clause 22. The implemented register set consists of the registers required by the IEEE 802.3 plus several others to provide additional visibility and controllability of the DP83TC813S-Q1 . Additionally, the DP83TC813S-Q1 includes control and status registers added to clause 45 as defined by IEEE 802.3bw. Access to clause 45 register field is achieved using clause 22 access.

The SMI includes the management clock (MDC) and the management input and output data pin (MDIO). MDC is sourced by the external management entity, also called Station (STA), and can run at a maximum clock rate of 24 MHz. MDC is not expected to be continuous, and can be turned off by the external management entity when the bus is idle.

MDIO is sourced by the external management entity and by the PHY. The data on the MDIO pin is latched on the rising edge of the MDC. MDIO pin requires a pullup resistor (2.2 KΩ), which pulls MDIO high during IDLE and turnaround.

Up to 9 DP83TC813S-Q1 PHYs can share a common SMI bus. To distinguish between the PHYs, a 4-bit address is used. During power-up-reset, the DP83TC813S-Q1 latches the PHYAD[3:0] configuration pins to determine its address.

The management entity must not start an SMI transaction in the first cycle after power-up-reset. To maintain valid operation, the SMI bus must remain inactive at least one MDC cycle after hard reset is deasserted. In normal MDIO transactions, the register address is taken directly from the management-frame reg_addr field, thus allowing direct access to 32 16-bit registers (including those defined in IEEE 802.3 and vendor specific). The data field is used for both reading and writing. The Start code is indicated by a <01> pattern. This pattern makes sure that the MDIO line transitions from the default idle line state. Turnaround is defined as an idle bit time inserted between the Register Address field and the Data field. To avoid contention during a read transaction, no device may actively drive the MDIO signal during the first bit of turnaround. The addressed DP83TC813S-Q1 drives the MDIO with a zero for the second bit of turnaround and follows this with the required data.

For write transactions, the station-management entity writes data to the addressed DP83TC813S-Q1 , thus eliminating the requirement for MDIO Turnaround. The turnaround time is filled by the management entity by inserting <10>.

Table 8-15 SMI Protocol Structure
SMI PROTOCOL<idle> <start> <op code> <device address> <reg address> <turnaround> <data> <idle>
Read Operation<idle><01><10><AAAAA><RRRRR><Z0><XXXX XXXX XXXX XXXX><idle>
Write Operation<idle><01><01><AAAAA><RRRRR><10><XXXX XXXX XXXX XXXX><idle>