SLOS919D June   2016  – November 2023 DRV2510-Q1

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Revision History
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Timing Requirements
    7. 6.7 Switching Characteristics
    8. 6.8 Typical Characteristics
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Analog Input and Configurable Pre-amplifier
      2. 7.3.2 Pulse-Width Modulator (PWM)
      3. 7.3.3 Designed for low EMI
      4. 7.3.4 Device Protection Systems
        1. 7.3.4.1 Diagnostics
          1. 7.3.4.1.1 Load Diagnostics
        2. 7.3.4.2 Faults During Load Diagnostics
        3. 7.3.4.3 Protection and Monitoring
    4. 7.4 Device Functional Modes
      1. 7.4.1 Operation in Shutdown Mode
      2. 7.4.2 Operation in Standby Mode
      3. 7.4.3 Operation in Active Mode
    5. 7.5 Programming
      1. 7.5.1 General I2C Operation
      2. 7.5.2 Single-Byte and Multiple-Byte Transfers
      3. 7.5.3 Single-Byte Write
      4. 7.5.4 Multiple-Byte Write and Incremental Multiple-Byte Write
      5. 7.5.5 Single-Byte Read
      6. 7.5.6 Multiple-Byte Read
    6. 7.6 Register Map
      1. 7.6.1 Address: 0x01
      2. 7.6.2 Address: 0x02
      3. 7.6.3 Address: 0x03
  9. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Applications
      1. 8.2.1 Single-Ended Source
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
          1. 8.2.1.2.1 Optional Components
          2. 8.2.1.2.2 Capacitor Selection
          3. 8.2.1.2.3 Solenoid Selection
          4. 8.2.1.2.4 Output Filter Considerations
        3. 8.2.1.3 Application Curves
        4. 8.2.1.4 Differential Input Diagram
  10. Power Supply Recommendations
  11. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  12. 11Device and Documentation Support
    1. 11.1 Device Support
      1. 11.1.1 Third-Party Products Disclaimer
    2. 11.2 Receiving Notification of Documentation Updates
    3. 11.3 Support Resources
    4. 11.4 Trademarks
    5. 11.5 Electrostatic Discharge Caution
    6. 11.6 Glossary
  13. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

General I2C Operation

The I2C bus employs two signals, SDA (data) and SCL (clock), to communicate between integrated circuits in a system. The bus transfers data serially, one bit at a time. The 8-bit address and data bytes are transferred with the most-significant bit (MSB) first. In addition, each byte transferred on the bus is acknowledged by the receiving device with an acknowledge bit. Each transfer operation begins with the master device driving a start condition on the bus and ends with the master device driving a stop condition on the bus. The bus uses transitions on the data pin (SDA) while the clock is at logic high to indicate start and stop conditions. A high-to-low transition on the SDA signal indicates a start, and a low-to-high transition indicates a stop. Normal data-bit transitions must occur within the low time of the clock period. Figure 7-4 shows a typical sequence. The master device generates the 7-bit slave address and the read-write (R/W) bit to start communication with a slave device. The master device then waits for an acknowledge condition. The slave device holds the SDA signal low during the acknowledge clock period to indicate acknowledgment. When the acknowledgment occurs, the master transmits the next byte of the sequence. Each device is addressed by a unique 7-bit slave address plus a R/W bit (1 byte). All compatible devices share the same signals through a bidirectional bus using a wired-AND connection.

The number of bytes that can be transmitted between start and stop conditions is not limited. When the last word transfers, the master generates a stop condition to release the bus. Figure 7-4 shows a generic data-transfer sequence.

Use external pull-up resistors for the SDA and SCL signals to set the logic-high level for the bus. Pull-up resistors between 660 Ω and 4.7 kΩ are recommended. Do not allow the SDA and SCL voltages to exceed the DRV2510-Q1 supply voltage, VDD.

Note:

The DRV2510-Q1 slave address is 0x6C (7-bit), or 1101100 in binary.

GUID-108FACF6-5C1D-4AEC-99A0-AFED2A9BC12A-low.gif Figure 7-4 Typical I2C Sequence

The DRV2510-Q1 device operates as an I2C-slave 1.8-V logic thresholds, but can operate up to the VDD voltage. The device address is 0x5A (7-bit), or 1011010 in binary which is equivalent to 0xB4 (8-bit) for writing and 0xB5 (8-bit) for reading.