SLOS824C December   2012  – March 2018 DRV2604

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
    1.     Simplified Schematic
  4. Revision History
  5. Pin Configuration and Functions
    1.     Pin Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Timing Requirements
    7. 6.7 Switching Characteristics
    8. 6.8 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  Support for ERM and LRA Actuators
      2. 7.3.2  Smart-Loop Architecture
        1. 7.3.2.1 Auto-Resonance Engine for LRA
        2. 7.3.2.2 Real-Time Resonance-Frequency Reporting for LRA
        3. 7.3.2.3 Automatic Overdrive and Braking
          1. 7.3.2.3.1 Startup Boost
          2. 7.3.2.3.2 Brake Factor
          3. 7.3.2.3.3 Brake Stabilizer
        4. 7.3.2.4 Automatic Level Calibration
          1. 7.3.2.4.1 Automatic Compensation for Resistive Losses
          2. 7.3.2.4.2 Automatic Back-EMF Normalization
          3. 7.3.2.4.3 Calibration Time Adjustment
          4. 7.3.2.4.4 Loop-Gain Control
          5. 7.3.2.4.5 Back-EMF Gain Control
        5. 7.3.2.5 Actuator Diagnostics
      3. 7.3.3  Open-Loop Operation for LRA
      4. 7.3.4  Open-Loop Operation for ERM
      5. 7.3.5  Flexible Front-End Interface
        1. 7.3.5.1 PWM Interface
        2. 7.3.5.2 Internal Memory Interface
          1. 7.3.5.2.1 Waveform Sequencer
          2. 7.3.5.2.2 Library Parameterization
        3. 7.3.5.3 Real-Time Playback (RTP) Interface
        4. 7.3.5.4 Analog Input Interface
        5. 7.3.5.5 Input Trigger Option
          1. 7.3.5.5.1 I2C Trigger
          2. 7.3.5.5.2 Edge Trigger
          3. 7.3.5.5.3 Level Trigger
        6. 7.3.5.6 Noise Gate Control
      6. 7.3.6  Edge Rate Control
      7. 7.3.7  Constant Vibration Strength
      8. 7.3.8  Battery Voltage Reporting
      9. 7.3.9  One-Time Programmable (OTP) Memory for Configuration
      10. 7.3.10 Low-Power Standby
      11. 7.3.11 Device Protection
        1. 7.3.11.1 Thermal Protection
        2. 7.3.11.2 Overcurrent Protection of the Actuator
    4. 7.4 Device Functional Modes
      1. 7.4.1 Power States
        1. 7.4.1.1 Operation With VDD < 2.5 V (Minimum VDD)
        2. 7.4.1.2 Operation With VDD > 6 V (Absolute Maximum VDD)
        3. 7.4.1.3 Operation With EN Control
        4. 7.4.1.4 Operation With STANDBY Control
        5. 7.4.1.5 Operation With DEV_RESET Control
        6. 7.4.1.6 Operation in the Active State
      2. 7.4.2 Changing Modes of Operation
      3. 7.4.3 Operation of the GO Bit
      4. 7.4.4 Operation During Exceptional Conditions
        1. 7.4.4.1 Operation With No Actuator Attached
        2. 7.4.4.2 Operation With a Short at REG Pin
        3. 7.4.4.3 Operation With a Short at OUT+, OUT–, or Both
    5. 7.5 Programming
      1. 7.5.1 Auto-Resonance Engine Programming for the LRA
        1. 7.5.1.1 Drive-Time Programming
        2. 7.5.1.2 Current-Dissipation Time Programming
        3. 7.5.1.3 Blanking Time Programming
      2. 7.5.2 Automatic-Level Calibration Programming
        1. 7.5.2.1 Rated Voltage Programming
        2. 7.5.2.2 Overdrive Voltage-Clamp Programming
      3. 7.5.3 I2C Interface
        1. 7.5.3.1 TI Haptic Broadcast Mode
        2. 7.5.3.2 General I2C Operation
        3. 7.5.3.3 Single-Byte and Multiple-Byte Transfers
        4. 7.5.3.4 Single-Byte Write
        5. 7.5.3.5 Multiple-Byte Write and Incremental Multiple-Byte Write
        6. 7.5.3.6 Single-Byte Read
        7. 7.5.3.7 Multiple-Byte Read
      4. 7.5.4 Programming for Open-Loop Operation
        1. 7.5.4.1 Programming for ERM Open-Loop Operation
        2. 7.5.4.2 Programming for LRA Open-Loop Operation
      5. 7.5.5 Programming for Closed-Loop Operation
      6. 7.5.6 Auto Calibration Procedure
      7. 7.5.7 Programming On-Chip OTP Memory
      8. 7.5.8 Waveform Playback Programming
        1. 7.5.8.1 Data Formats for Waveform Playback
          1. 7.5.8.1.1 Open-Loop Mode
          2. 7.5.8.1.2 Closed-Loop Mode, Unidirectional
          3. 7.5.8.1.3 Closed-Loop Mode, Bidirectional
        2. 7.5.8.2 Waveform Setup and Playback
          1. 7.5.8.2.1 Waveform Playback Using RTP Mode
          2. 7.5.8.2.2 Waveform Playback Using the Analog-Input Mode
          3. 7.5.8.2.3 Waveform Playback Using PWM Mode
          4. 7.5.8.2.4 Loading Data to RAM
            1. 7.5.8.2.4.1 Header Format
            2. 7.5.8.2.4.2 RAM Waveform Data Format
          5. 7.5.8.2.5 Waveform Sequencer
          6. 7.5.8.2.6 Waveform Triggers
    6. 7.6 Register Map
      1. 7.6.1  Status (Address: 0x00)
        1. Table 3. Status Register Field Descriptions
      2. 7.6.2  Mode (Address: 0x01)
        1. Table 4. Mode Register Field Descriptions
      3. 7.6.3  Real-Time Playback Input (Address: 0x02)
        1. Table 5. Real-Time Playback Input Register Field Descriptions
      4. 7.6.4  HI_Z (Address: 0x03)
        1. Table 6. HI_Z Register Field Descriptions
      5. 7.6.5  Waveform Sequencer (Address: 0x04 to 0x0B)
        1. Table 7. Waveform Sequencer Register Field Descriptions
      6. 7.6.6  GO (Address: 0x0C)
        1. Table 8. GO Register Field Descriptions
      7. 7.6.7  Overdrive Time Offset (Address: 0x0D)
        1. Table 9. Overdrive Time Offset Register Field Descriptions
      8. 7.6.8  Sustain Time Offset, Positive (Address: 0x0E)
        1. Table 10. Sustain Time Offset, Positive Register Field Descriptions
      9. 7.6.9  Sustain Time Offset, Negative (Address: 0x0F)
        1. Table 11. Sustain Time Offset, Negative Register Field Descriptions
      10. 7.6.10 Brake Time Offset (Address: 0x10)
        1. Table 12. Brake Time Offset Register Field Descriptions
      11. 7.6.11 Rated Voltage (Address: 0x16)
        1. Table 13. Rated Voltage Register Field Descriptions
      12. 7.6.12 Overdrive Clamp Voltage (Address: 0x17)
        1. Table 14. Overdrive Clamp Voltage Register Field Descriptions
      13. 7.6.13 Auto-Calibration Compensation Result (Address: 0x18)
        1. Table 15. Auto-Calibration Compensation-Result Register Field Descriptions
      14. 7.6.14 Auto-Calibration Back-EMF Result (Address: 0x19)
        1. Table 16. Auto-Calibration Back-EMF Result Register Field Descriptions
      15. 7.6.15 Feedback Control (Address: 0x1A)
        1. Table 17. Feedback Control Register Field Descriptions
      16. 7.6.16 Control1 (Address: 0x1B)
        1. Table 18. Control1 Register Field Descriptions
      17. 7.6.17 Control2 (Address: 0x1C)
        1. Table 19. Control2 Register Field Descriptions
      18. 7.6.18 Control3 (Address: 0x1D)
        1. Table 20. Control3 Register Field Descriptions
      19. 7.6.19 Control4 (Address: 0x1E)
        1. Table 21. Control4 Register Field Descriptions
      20. 7.6.20 V(BAT) Voltage Monitor (Address: 0x21)
        1. Table 22. V(BAT) Voltage-Monitor Register Field Descriptions
      21. 7.6.21 LRA Resonance Period (Address: 0x22)
        1. Table 23. LRA Resonance-Period Register Field Descriptions
      22. 7.6.22 RAM-Address Upper Byte (Address: 0xFD)
        1. Table 24. RAM-Address Upper-Byte Register Field Descriptions
      23. 7.6.23 RAM-Address Lower Byte (Address: 0xFE)
        1. Table 25. RAM Address Lower Byte Register Field Descriptions
      24. 7.6.24 RAM Data Byte (Address: 0xFF)
        1. Table 26. RAM-Data Byte Register Field Descriptions
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 Actuator Selection
          1. 8.2.2.1.1 Eccentric Rotating-Mass Motors (ERM)
          2. 8.2.2.1.2 Linear Resonance Actuators (LRA)
            1. 8.2.2.1.2.1 Auto-Resonance Engine for LRA
        2. 8.2.2.2 Capacitor Selection
        3. 8.2.2.3 Interface Selection
        4. 8.2.2.4 Power Supply Selection
      3. 8.2.3 Application Curves
    3. 8.3 Initialization Setup
      1. 8.3.1 Initialization Procedure
      2. 8.3.2 Typical Usage Examples
        1. 8.3.2.1 Play a Waveform or Waveform Sequence from the RAM Waveform Memory
        2. 8.3.2.2 Play a Real-Time Playback (RTP) Waveform
        3. 8.3.2.3 Play a PWM or Analog Input Waveform
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
      1. 10.1.1 Trace Width
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Documentation Support
      1. 11.1.1 Related Documentation
    2. 11.2 Receiving Notification of Documentation Updates
    3. 11.3 Community Resources
    4. 11.4 Trademarks
    5. 11.5 Electrostatic Discharge Caution
    6. 11.6 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Control1 (Address: 0x1B)

Figure 46. Control1 Register
7 6 5 4 3 2 1 0
STARTUP_BOOST Reserved AC_COUPLE DRIVE_TIME[4:0]
R/W-1 R/W-0 R/W-1 R/W-0 R/W-0 R/W-1 R/W-1

Table 18. Control1 Register Field Descriptions

BIT FIELD TYPE DEFAULT DESCRIPTION
7 STARTUP_BOOST R/W 1

This bit applies higher loop gain during overdrive to enhance actuator transient response.

6 Reserved
5 AC_COUPLE R/W 0

This bit applies a 0.9-V common mode voltage to the IN/TRIG pin when an AC-coupling capacitor is used. This bit is only useful for analog input mode. This bit should not be asserted for PWM mode or external trigger mode.

0: Common-mode drive disabled for DC-coupling or digital inputs modes

1: Common-mode drive enabled for AC coupling

4-0 DRIVE_TIME[4:0] R/W 0x13

LRA Mode: Sets initial guess for LRA drive-time in LRA mode. Drive time is automatically adjusted for optimum drive in real time; however, this register should be optimized for the approximate LRA frequency. If the bit is set too low, it can affect the actuator startup time. If the bit is set too high, it can cause instability.

Optimum drive time (ms) ≈ 0.5 × LRA Period

Drive time (ms) = DRIVE_TIME[4:0] × 0.1 ms + 0.5 ms

ERM Mode: Sets the sample rate for the back-EMF detection. Lower drive times cause higher peak-to-average ratios in the output signal, requiring more supply headroom. Higher drive times cause the feedback to react at a slower rate.

Drive Time (ms) = DRIVE_TIME[4:0] × 0.2 ms + 1 ms