SLVSCV1E September   2015  – February 2017 DRV3205-Q1

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Serial Peripheral Interface Timing Requirements
    7. 6.7 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Programming
      1. 7.3.1 SPI
        1. 7.3.1.1 Address Mode Transfer
          1. 7.3.1.1.1 SPI Address Transfer Phase
        2. 7.3.1.2 SPI Data Transfer Phase
        3. 7.3.1.3 Device Data Response
    4. 7.4 Register Maps
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Three-Phase Motor Drive-Device for Automotive Application
    3. 8.3 System Example
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Documentation Support
      1. 11.1.1 Related Documentation
    2. 11.2 Receiving Notification of Documentation Updates
    3. 11.3 Community Resources
    4. 11.4 Trademarks
    5. 11.5 Electrostatic Discharge Caution
    6. 11.6 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Specifications

Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)(2)
POS MIN MAX UNIT
2.1 VS, VSH DC voltage –0.3 60 V
2.1a VS DC voltage Negative voltages with minimum serial resistor 5 Ω, TA = 25°C –5 V
2.1b VSH DC voltage Negative voltages with minimum serial resistor 10 Ω, TA = 25°C –5 V
2.1c VS DC voltage Negative voltages with minimum serial resistor 5 Ω, TA = 105°C –2.5 V
2.1d VSH DC voltage Negative voltages with minimum serial resistor 10 Ω, TA = 105°C –2.5 V
2.2A GHSx Gate high-side voltage –9 70 V
2.2B SHSx Source high-side voltage –9 70 V
2.3 GHSx-SHSx Gate-source high-side voltage difference Externally driven, internal limited, see position 5.4 in Electrical Characteristics –0.3 15 V
2.4 GLSx Gate low-side voltage –9 20 V
2.5 SLSx Source low-side voltage –9 7 V
2.6 GLSx-SLSx Gate-source low-side voltage difference Externally driven, internal limited, see position 5.5 in Electrical Characteristics –0.3 15 V
2.7 BOOST, SW Boost converter –0.3 70 V
2.8 INx, IPx Current sense input voltage –9 7 V
2.8A INx, IPx Current sense input current Clamping current –5 5 mA
2.8C Ox Current sense output voltage –0.3 ADREF +0.3 V
2.8D Ox Forced input current –10 10 mA
2.9 VDDIO Analog input voltage –0.3 60 V
2.9a ADREF Analog input voltage –0.3 60 V
2.10 ILSx,IHSx, EN, DRVOFF, SCLK, NCS, SDI Digital input voltage –0.3 60 V
2.11 RVSET Analog input voltage –0.3 60 V
2.13 GNDA, GNDLS_B Difference between GNDA and GNDLS_B –0.3 0.3 V
2.20 Maximum slew rate of SHSx pins, SRSHS –250 250 V/µs
2.21 ERR, SDO, RO Analog and digital output voltages –0.3 6 V
2.21A ERR, SDO, RO Forced input/output current –10 10 mA
2.22 TEST Unused pins. Connect to GND. –0.3 0.3 V
2.24 VCC5 Internal supply voltage –0.3 6 V
2.24A Short-to-ground current, IVCC5(3) Internal current limit 80 mA
2.25 VCC3 Internal supply voltage –0.3 3.6 V
2.26 Short-to-ground current, IVCC3 Limited by VCC5 80 mA
2.27 Driver FET total gate charge (per FET), Qgmax VS = 12 V, ƒPWM = 20 kHz, 6 FETs ON/OFF per PWM cycle 200(4) nC
2.28 VS = 24 V, ƒPWM = 20 kHz, 6 FETs ON/OFF per PWM cycle 100(4) nC
2.14 Operating virtual junction temperature, TJ –40 150 °C
2.15 Storage temperature, Tstg –55 165 °C
Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
All voltages are with respect to network ground terminal, unless specified otherwise.
IVCC5 is not specifying VCC5 output current capability for external load. The allowed external load on VCC5 is specified at position 3.18 in Recommended Operating Conditions.
The maximum value also depends on PCB thermal design, modulation scheme, and motor operation time.

ESD Ratings

POS VALUE UNIT
2.17 V(ESD) Electrostatic discharge Human-body model (HBM), per AEC Q100-002(1) All pins ±2000 V
Pins 4, 6, and 14 ±4000
2.18 Charged-device model (CDM), per AEC Q100-011 All pins ±500
2.19 Corner pins (1, 12, 13, 24, 25, 36, 37, and 48) ±750
AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.

Recommended Operating Conditions

POS MIN NOM MAX UNIT
3.1 VS Supply voltage, normal voltage operation Full device functionality. Operation at VS = 4.75 V only when coming from higher VS. Minimum VS for startup = 4.85 V 4.75 40 V
3.2 VSLO Supply voltage, logic operation Logic functional (during battery cranking after coming from full device functionality) 4 40 V
3.3 VDDIO Supply voltage for digital I/Os 2.97 5.5 V
3.4 D Duty cycle of bridge drivers 0% 100%
3.5 ƒPWM PWM switching frequency 0 22(1) kHz
3.6A IVSn VS quiescent current normal operation (boost converter enabled, drivers not switching) Boost converter enabled, see and for SHSx/SLSx connections. EN_GDBIAS = 1 22 mA
3.61A IVSn VS quiescent current normal operation (boost converter enabled, drivers not switching) Boost converter enabled, see and for SHSx/SLSx connections. EN_GDBIAS = 0 22.3 mA
3.6B IBOOSTn BOOST pin quiescent current normal operation (drivers not switching) 4.75 V < VS < 20 V, TA = 25°C to 125°C 9 mA
3.62B 4.75 V < VS < 20 V, TA = –40°C 10 mA
3.61B IVSn VS quiescent additional current normal operation because of RVSET thermal voltage output enabled (boost converter enabled, drivers not switching) THERMAL_RVSET_EN = 1 0.6
3.6C IBOOSTn BOOST pin quiescent current normal operation (drivers not switching) 20 < VS < 40 V, TA = 25°C to 125°C 9.5 mA
3.61C 20 < VS < 40 V, TA = –40°C 10.5
3.6D IBOOST,sw BOOST pin additional load current because of switching gate drivers Excluding FET gate charge current. 20-kHz all gate drivers switching at the same time. EN_GDBIAS = 1 4 mA
3.61D IBOOST,sw BOOST pin additional load current because of switching gate drivers Excluding FET gate charge current. 20-kHz all gate drivers switching at the same time. EN_GDBIAS = 0 5.4 mA
3.75 IVSq_1 VS quiescent current shutdown (sleep mode) 1 VS = 14 V, no operation, TJ < 25°C, EN = Low, total leakage current on all supply connected pins 20 µA
3.75a IVSq_2 VS quiescent current shutdown (sleep mode) 2 VS = 14 V, no operation, TJ < 85°C, EN = Low, total leakage current on all supply connected pins 30 µA
3.8 TJ Junction temperature –40 150 °C
3.9 TA Operating ambient free-air temperature With proper thermal connection –40 125 °C
3.11 VINx,VIPx Current sense input voltage VIPx – VInx, RO = 2.5 V GAIN = 12 –0.15 0.15 V
3.13 ADREF Clamping voltage for current sense amplifier outputs O1/2/3 2.97 5.5 V
3.13a Reserved V
3.13b Reserved V
3.14 VCC3 Internal supply voltage VS > 4 V, external load current <100 µA, decoupling capacitor typical 0.1 µF 3(1) 3.3 V
3.15 IVCC3 VCC3 output current Intended for MCU ADC input 0 100 µA
3.16 CVCC3 VCC3 decoupling capacitance 0.075 0.1 0.2 µF
3.17 VCC5 Internal supply voltage VS > 6 V, external load current < 100 µA, decoupling capacitor typical 1 µF 5.15 5.45 V
3.18 IVCC5 VCC5 output current Intended for MCU ADC input 0 100 µA
3.19 CVCC5 VCC5 decoupling capacitance 0.5 1 1.5 µF
Maximum PWM allowed also depends on maximum operating temperature, FET gate charge current, VS supply voltage, modulation scheme, and PCB thermal design.

Thermal Information

THERMAL METRIC(1) DRV3205-Q1 UNIT
PHP (HTQFP)
48 PINS
RθJA Junction-to-ambient thermal resistance 25.7 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 10.3 °C/W
RθJB Junction-to-board thermal resistance 6 °C/W
ψJT Junction-to-top characterization parameter 0.2 °C/W
ψJB Junction-to-board characterization parameter 5.9 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance 0.3 °C/W
For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report (SPRA953).

Electrical Characteristics

over operating temperature TJ = –40°C to 150°C and recommended operating conditions, VS = 4.75 V to 40 V(4), ƒPWM < 20 kHz (unless otherwise noted)
POS PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
4.1 CURRENT SENSE AMPLIFIER
4.2.1 Voff1a Initial input offset of amplifiers TJ = 25°C, ADREF = 5 V,
RO_CFG [4:0] = 5’b11000: ADREF × 25 / 50
±1 mV
4.2.1a TJ = 25°C, ADREF = 3.3 V,
RO_CFG [4:0] = 5’b11000: ADREF × 25 / 50
±1 mV
4.2.2 Voff1b Temperature and aging offset(5) ADREF = 5 V,
RO_CFG [4:0] = 5’b11000: ADREF × 25 / 50
±1 mV
4.2.2a ADREF = 3.3 V,
RO_CFG [4:0] = 5’b11000: ADREF × 25 / 50
±1 mV
4.2.3 Vcom1(1) Input common voltage range –3 3 V
4.2.4 VOa Nominal output voltage level, positive ox swing Normal voltage operation, VS ≥ 5.75 V;
0.5-mA load current
ADREF – 0.5 + Voxm V
4.2.4a VOa Nominal output voltage level, negative ox swing Normal voltage operation, VS ≥ 5.75 V;
0.5-mA load current
0.5 V
4.2.4b VOa Nominal output voltage level 2, positive ox swing Normal voltage operation, VS ≥ 5.75 V;
10-µA load current
ADREF – 0.06 + Voxm V
4.2.4c VOa Nominal output voltage level 2, negative ox swing Normal voltage operation, VS ≥ 5.75 V;
10-µA load current
0.09 V
4.2.5 VOb Output voltage level during low voltage operation, positive ox swing Low voltage operation, 4.75 V ≤ VS < 5.75 V; 0.5-mA load current VS – 1.25;
ADREF – 0.5 + Voxm
V
4.2.5a VOb Output voltage level during low voltage operation, negative ox swing Low voltage operation, 4.75 V ≤ VS < 5.75 V; 0.5-mA load current 0.5 V
4.2.5b VOb Output voltage level during low voltage operation 2, positive ox swing Low voltage operation, 4.75 V ≤ VS < 5.75 V; 10-µA load current VS – 0.75;
ADREF – 0.06 + Voxm
V
4.2.5c VOb Output voltage level during low voltage operation 2, negative ox swing Low voltage operation, 4.75 V ≤ VS < 5.75 V; 10-µA load current 0.09 V
4.2.6 GBP Gain bandwidth product GBP 0.5 V ≤ O1/2/3 ≤ 4.5 V, capacitor load = 25 pF,
specified by design.
5 MHz
4.2.8 G1 Gain 1 SPI configurable, Normal voltage operation, VS ≥ 5.75 V; 0.5-mA load current 7.896 8 8.096 V/V
4.2.9 G2 Gain 2 SPI configurable, Normal voltage operation, VS ≥ 5.75 V; 0.5-mA load current 11.856 12 12.144 V/V
4.2.10 G3 Gain 3 SPI configurable, Normal voltage operation, VS ≥ 5.75 V; 0.5-mA load current 15.808 16 16.192 V/V
4.2.11 G4 Gain 4 SPI configurable, Normal voltage operation, VS ≥ 5.75 V; 0.5-mA load current 31.616 32 32.384 V/V
4.2.12 PSRRo123 Power supply rejection ratio at DC VS to O1/2/3 decoupling capacitor typical 1 µF on VCC5 / 0.1-µF VCC3 at DC
Specified by design, capacitor load = 25 pF
RO = 2.5 V, ADREF = 5 V, gain = 16,
dVS / dOx dVCC5 / dOx
60 80 dB
4.2.12a CMRRo123 Common mode rejection ratio at DC Specified by design, capacitor load = 25 pF
RO = 2.5 V, ADREF = 5 V, gain = 1,
VS = 12 V
70 80 dB
4.2.12b CMGo123 Common mode gain at 500 kHz Specified by design, capacitor load = 25 pF
RO = 2.5 V, ADREF = 5 V, gain = 16
–29 dB
4.2.12c CMGo123 Common mode gain peak Specified by design, capacitor load = 25 pF
RO = 2.5 V, ADREF = 5 V, gain = 16
–15 dB
4.2.13 Iinamp Inx, IPx input bias current VCM (input common mode voltage) = ±3 V, RSHUNT_MODE[1:0] = 11 50 90 µA
4.2.13 Iinamp2 Inx, IPx input bias current VCM (input common mode voltage) = ±3 V, RSHUNT_MODE[1:0] = 2’b000110 60 90 µA
4.2.14 TsettleO123 Ox settling time to withing ±2% of final value Specified by design, capacitor load = 25 pF,
RO = 2.5 V, ADREF = 5 V, gain = 16,
0.5 V ≤ O1/2/3 ≤ 4.5 V
0.8 µs
4.2.15 Iinampd Inx, IPx Input bias differential current VCM = ±3 V IIPx-INx, IPx-INx = 0 V, RSHUNT_MODE[1:0] = 11 –1.2 1.2 µA
4.2.16 Rinam Inx, IPx Input resistance VCM = ±3 V 9 12 15
4.2.12d PSRR3o123 Power supply rejection ratio at DC VS to O1/2/3 decoupling capacitor typical 1 µF on VCC5 / 0.1-µF VCC3 at DC specified by design, capacitor load = 25 pF
RO = 1.65 V ADREF = 3.3 V, gain = 16,
dVS / dOx dVCC5 / dOx
70 80 dB
4.2.12e CMRR3o123 Common mode rejection ratio at DC Specified by design, capacitor load = 25 pF
RO = 1.65 V ADREF = 3.3 V, gain = 16
VS = 12 V
70 80 dB
4.2.12f CMG3o123 Common mode gain at 500 kHz Specified by design, capacitor load = 25 pF
RO = 1.65 V ADREF = 3.3 V, gain = 16
–29 dB
4.2.12g CMG3o123 Common mode gain peak Specified by design, capacitor load = 25 pF
RO = 1.65 V ADREF = 3.3 V, gain = 16
–15 dB
4.3 SHIFT BUFFER
4.3.2 VRO Shift output voltage range ADREF = 5 V 0.1 × ADREF 0.5 × ADREF V
4.3.3 VRoffset Shift voltage offset (with respect to RO) ADREF = 5 V, RO_CFG [4:0] = 5’b11000:
ADREF × 25 / 50, Iload = internal load
±1.7 mV
4.3.3a RO_CFG [4:0] = 5’b00100:
ADREF × 5 / 50-5’b10111:
ADREF × 24 / 50
±4 mV
4.3.3b VRoffset Shift voltage offset (with respect to ADREF (3.3 V) × 25 / 50 (RO_CFG [4:0] = 5'b11000)) ADREF = 3.3 V, RO_CFG [4:0] = 5’b11000: ADREF × 25 / 50, Iload = internal load ±1.7 mV
4.3.4 CRO RO output load capacitance range 0 150 pF
4.3.5 IRO Shift output current capability ADREF = 5 V, RO_CFG [4:0] = 5’b11000:
ADREF × 25 / 50
–5 5 mA
4.3.6 RO_CFG [4:0] = 5’b00100:
ADREF × 5 / 50-5’b10111:
ADREF × 24 / 50
–1 1 mA
4.3.7 Tdgadref ADREF UV/ OV detection deglitch time 3 5 7 µs
4.3.8 PSRRRO Power supply rejection ratio at DC Decoupling capacitor typical 1 µF on VCC5 / 0.1 µF VCC3 at DC.
Specified by design, capacitor load = 25 pF
RO = 2.5 V ADREF = 5 V, Gain = 16,
dVS / dRO dVCC5 / dRO
70 80 dB
4.4.9 tdgadref ADREF UV/OV detection deglitch time 3 5 7 µs
4.4 ADREF / VDDIO
4.4.1 Voxm Tolerance of ADREF voltage clamp Relative to ADREF 5.75 V ≤ VS –0.1 0.03 0.25 V
4.4.2 Voxos Overshoot of O1/2/3 over ADREF Ox-ADREF; for <1 µs; specified by design 1.2 V
4.4.3 IADREF Bias current for voltage clamping circuit ADREF = 3.3 V, pin to ground 300 µA
4.4.4 Vovadref Overvoltage threshold ADREF: 3.3-V setting by RVSET resistor 3.696 3.795 3.894 V
4.4.4a ADREF: 5-V setting by RVSET resistor 5.6 5.75 5.9 V
4.4.5 Vuvadref Undervoltage threshold ADREF: 3.3-V setting by RVSET resistor 2.706 2.805 2.904 V
4.4.5a ADREF: 5-V setting by RVSET resistor 4.1 4.25 4.4 V
4.4.7 Vovvddio Overvoltage threshold VDDIO: 3.3-V setting by RVSET resistor 3.696 3.795 3.894 V
4.4.7a VDDIO: 5-V setting by RVSET resistor 5.6 5.75 5.9 V
4.4.8 Vuvvddio Undervoltage threshold VDDIO: 3.3-V setting by RVSET resistor 2.706 2.805 2.904 V
4.4.8a VDDIO: 5-V setting by RVSET resistor 4.1 4.25 4.4 V
4.4.10 Rvset33 VDDIO = 3.3 V / ADREF = 3.3-V mode STAT6 bit[3:0] = 4’b0001 135 150 165
4.4.11 Rvset53 VDDIO = 5 V / ADREF = 3.3-V mode STAT6 bit[3:0] = 4’b0100 46 51 56.5
4.4.12 Rvset35 VDDIO = 3.3 V / ADREF = 5-V mode STAT6 bit[3:0] = 4’b1000 13.5 15 16.5
4.4.13 Rvset55 VDDIO = 5 V / ADREF = 5-V mode STAT6 bit[3:0] = 4’b0010 4.6 5.1 5.65
4.4.30 Rvsetopen RVSET resistor error detection 650
4.4.31 Rvsetshort RVSET resistor error detection 1.4
4.4.32 Vrvsettjn40 RVSET output voltage –40°C TJ, THERMAL_RVSET_EN = 1 1.67 1.745 1.82 V
4.4.33 Vrvsettj25 25°C TJ, THERMAL_RVSET_EN = 1 1.445 1.535 1.625
4.4.34 Vrvsettj125 125°C TJ, THERMAL_RVSET_EN = 1 1.085 1.195 1.305
VCC3 / VCC5 REGULATORS
4.4.14 VCC3 VCC3 regulator output voltage VS > 4 V 3 3.15 3.3 V
4.4.15 VCC3UV VCC3 regulator undervoltage threshold VS > 4 V 2.7 2.85 3 V
4.4.16 VCC3OV(1) VCC3 regulator overvoltage threshold VS > 4 V 3.3 3.45 3.6 V
4.4.17 VCC5_1 VCC5 regulator output voltage 1 VS > 6 V 5.15 5.3 5.45 V
4.4.18 VCC5_2 VCC5 regulator output voltage 2 6 V > VS > 4.75 V 4.6 5.45 V
4.4.19 VCC5UV VCC5 regulator undervoltage threshold VS > 4.75 V 4.3 4.6 V
4.4.20 VCC5OV VCC5 regulator overvoltage threshold VS > 4.75 V 5.45 5.6 5.75 V
5. GATE DRIVER
5.1 VGS,low Gate-source voltage low, high-side/low-side driver Active pulldown, Iload = –2 mA 0 0.2 V
5.2 RGSp Passive gate-source resistance Vgs ≤ 200 mV  110 220 330
5.3 RGSsa Semi-active gate-source resistance In sleep mode, VGS > 2 V 2 4
5.3b IGSL01 Low-side driver pullup/pulldown current Gate driven low by gate driver,
CURR1, 3 = 01, SPI configurable
TYP × 0.65 0.65 TYP × 1.35 A
5.3c IGSL00 Gate driven low by gate driver(1),
CURR1, 3 = 00, SPI configurable
TYP × 0.1 0.15 TYP × 1.9 A
5.3d IGSL10 Gate driven low by gate driver,
CURR1, 3 = 11, SPI configurable
TYP × 0.65 1.1 TYP × 1.35 A
5.3f IGSH01 High-side driver pullup/pulldown current Gate driven low by gate driver,
CURR0, 2 = 01, SPI configurable
TYP × 0.65 0.65 TYP × 1.35 A
5.3g IGSH00 Gate driven low by gate driver(1),
CURR0, 2 = 00, SPI configurable
TYP × 0.1 0.15 TYP × 1.9 A
5.3h IGSH11 Gate driven low by gate driver,
CURR0, 2 = 11, SPI configurable
TYP × 0.65 1.1 TYP × 1.35 A
5.3i IGSHsd High-side/low-side driver shutdown current 2 30 70 mA
5.4 VGS,HS,high High-side output voltage Iload = –2 mA; 4.75 V < VS < 40 V 9 13.4 V
5.5 VGS,LS,high Low-side output voltage Iload = –2 mA 9 13.4 V
5.27 tDon Propagation on delay time(5) After ILx/IHx rising edge, Cload = 10 nF, CURR1, 3 = 10, VGS = 1 V 100 200 350 ns
5.31 Adt Accuracy of dead time If not disabled in CFG1 –15% 15%
5.32 IHSxlk_1 Source leak current, total leakage current of source pins EN = L, SHSx = 1.5 V, TJ < 125°C –5 5 µA
5.32a IHSxlk_2 EN = L, SHSx = 1.5 V, 125°C < TJ < 150°C –40 40 µA
5.29 tDoff Propagation off delay time(5) ILx/IHx falling edge to VGS,LS,high(VGS,HS,high) – 1 V Ciss = 10 nF, CURR1,3 = 10, 100 200 350 ns
5.30 tDoffdiff Propagation off delay time difference(5) LSx to LSy and HSx to HSy Cload = 10 nF, CURR1,3 = 10, VGS,LS,high(VGS,HS,high) – 1 V 50 ns
5.30a tDon_Doff_diff Difference between propagation on delay time and propagation off delay time(5) For each gate driver in each channel:
Cload = 10 nF, CURR1, 3 = 10, VGS = 1 V (rising), VGS,LS,high(VGS,HS,high) – 1 V (falling)
150 ns
5.30c tENoff Propagation off (EN) deglitching time(5) After falling edge on EN 2.5 6 12 µs
5.30d tSD Time until gate drivers initiate shutdown(5) After falling edge on EN 12 24 µs
5.30e tSDDRV Time until gate drivers initiate shutdown(5) After rising edge on DRVOFF 10 µs
6. BOOST CONVERTER
6.1 VBOOST Boost output voltage excluding switching ripple and response delay. BOOST-VS voltage 14 15 16.5 V
6.1b VBOOSTOV Boost output voltage overvoltage with respect GND 64 67.5 70 V
6.2 IBOOST Output current capability External load current including external MOSFET gate charge current
BOOST – VS > VBOOSTUV
40 mA
6.3 ƒBOOST Switching frequency BOOST – VS > VBOOSTUV; ensured by characterization(3) 1.8 2.5 3 MHz
6.31 BOOST – VS > VBOOSTUV; VS < 6 V; ensured by characterization(3) 1.1 3
6.4 VBOOSTUV Undervoltage shutdown level BOOST-VS voltage 7 8 V
6.4a VBOOSTUV2 Undervoltage condition that device may enter RESET state BOOST-GND voltage 10 V
6.5 tBCSD Filter time for undervoltage detection 5 6 µs
6.7 VGNDLS_B,off Voltage at GNDLS_B pin at which boost FET switches off because of current limit 110 150 200 mV
6.7a tSW,off Delay of the GNDLS_B current limit comparator Specified by design 100 ns
6.8 ISW,fail Internal second-level current limit GNDLS_B = 0 V 840 1600 mA
6.9 Rdson_BSTfet Rdson resistance boost FET VS ≥ 6
ISW = VGNDLS_B,off / 0.33 Ω
0.25 1.5 Ω
6.9a VS < 6
ISW= VGNDLS_B,off / 0.33 Ω
2 Ω
7. DIGITAL INPUTS
7.1 INL Input low threshold All digital inputs NCS, DRVOFF, ILSx, IHSx, SDI VDDIO × 0.3 V
7.1a ENH EN input high threshold VS > 4 V 2.7 V
7.1b ENL EN input low threshold VS > 4 V 0.7 V
7.2 INH Input high threshold All digital inputs NCS, DRVOFF, ILSx, IHSx, SDI VDDIO × 0.7 V
7.3 Inhys Input hysteresis All digital inputs EN, NCS, DRVOFF, ILSx, IHSx, SDI, VDDIO = 5 V 0.3 0.4   V
7.3a Inhys Input hysteresis All digital inputs EN, NCS, DRVOFF, ILSx, IHSx, SDI, VDDIO = 3.3 V 0.2 0.3 V
7.4 Rpd,EN Input pulldown resistor at EN pin EN 140 200 360
7.4a tdeg,ENon Power-up time after EN pin high from sleep mode to active mode ERR = L → H 5 ms
7.5 Rpullup Input pullup resistance NCS, DRVOFF 200 280 400
7.6 Rpulldown Input pulldown resistance ILSx, IHSx, SDI , SCLK Input voltage = 0.1 V 100 140 200
7.6a Rpulldown Input pulldown current ILSx, IHSx, SDI, SCLK Input voltage = VDDIO 4 50 µA
8. DIGITAL OUTPUTS
8.1 OH1 Output high voltage 1 All digital outputs: SDO, I = ±2 mA; VDDIO in functional range(6) VDDIO × 0.9 V
8.2 OL1 Output low voltage 1 All digital outputs: SDO, I = ±2 mA; VDDIO in functional range VDDIO × 0.1 V
8.3 OH2 Output high voltage 2 ERR I = –0.2 mA; VDDIO in functional range VDDIO × 0.9 V
8.4 OL2 Output low voltage 2 ERR I = +0.2 mA; VDDIO in functional range VDDIO × 0.1 V
9. VDS / VGS / RSHUNT MONITORING
9.1 VSCTH VDS short-circuit threshold range If not disabled in CFG1 0.1 2 V
9.2 Avds Accuracy of VDS monitoring 0.1-V to 0.5-V threshold setting –50 50 mV 
0.6-V to 2-V threshold setting –10% 10%
9.3 tVDS Detection filter time Only rising edge of VDS comparators are filtered 5 µs
9.4 Vgserr+_1 VGS error detection 1 STAT7, IHSx (ILSx) = H 7 8.5 V
9.5 Vgserr– VGS error detection STAT7, IHSx (ILSx) = L 2 V
9.6 tVGS Detection filter time CFG6[5:4] 1.0 µs
9.6a tVGSm Detection mask time CFG6[2:0] 2.5 µs
9.7 VSHUNT RSHUNT shutdown threshold range SPI configurable 75 540 mV
9.8 AVSHUNT Accuracy of RSHUNT shutdown 75-mV to 165-mV setting –18 18 mV
180-mV to 540-mV setting –10% 10%
9.9 tVSHUNT Detection filter time 5 µs
10. THERMAL SHUTDOWN
10.1 Tmsd0 Thermal recovery Specified by characterization 130 153 178 °C
10.2 Tmsd1 Thermal warning Specified by characterization 140 165 190 °C
10.3 Tmsd2 Thermal global reset Specified by characterization 170 195 220 °C
10.4 Thmsd Thermal shutdown×2 hysteresis Specified by characterization 40 °C
10.5 tTSD1 Thermal warning filter time Specified by characterization 40 45 50 µs
10.6 tTSD2 Thermal shutdown×2 filter time Specified by characterization 2.5 6 12 µs
12. VS MONITORING
12.1 VVS,OVoff0 Overvoltage shutdown level range(2) Programmable CFG5 mode1, 12-V/24-V mode 29 38 V
12.1a VVS,OVoff1 Overvoltage shutdown level(2) 29-V threshold setting 27.5 29 30.5 V
12.1b VVS, OVon1 Recovery level form overvoltage shutdown(2) 29-V threshold setting 26.5 28 29.5 V
12.1c VVS,OVoff2 Overvoltage shutdown level(2) 33-V threshold setting 32 33.5 35 V
12.1d VVS, OVon2 Recovery level form overvoltage shutdown(2) 33-V threshold setting 31 32.5 34 V
12.1e VVS,OVoff3 Overvoltage shutdown level(2) 38-V threshold setting 36.5 38 39.5 V
12.1f VVS, OVon3 Recovery level form overvoltage shutdown(2) 38-V threshold setting 35.5 37 38.5 V
12.2 VVS,UVoff Undervoltage shutdown level(2) VS is falling from higher voltage than 4.75 V 4.5 4.75 V
12.2a VVS,UVon Recovery level form undervoltage shutdown(2) Minimum VS for device startup 4.6 4.85 V
12.3 tVS,SHD Filter time for overvoltage/undervoltage shutdown 5 6 µs
ADREF / VDDIO overvoltage and undervoltage is set by RVSET.
Shutdown signifies predriver shutdown, not VCC3/VCC5 regulator shutdown.
During startup when BOOST-VS < VBOOSTUV , ƒBOOST is typically 1.25 MHz.
Product life time depends on VS voltage, PCB thermal design, modulation scheme, and motor operation time. The product is designed for 12-V and 24-V battery system.
Ensured by characterization.
All digital outputs have a push-pull output stage between VDDIO and ground.

Serial Peripheral Interface Timing Requirements

POS 13 MIN NOM MAX UNIT
13.1 ƒSPI SPI clock (SCLK) frequency 4(1) MHz
13.2 tSPI SPI clock period(2) 250 ns
13.3 thigh High time: SCLK logic high duration(2) 90 ns
13.4 tlow Low time: SCLK logic low duration(2) 90 ns
13.5 tsucs Setup time NCS: time between falling edge of NCS and rising edge of SCLK(2) tSPI / 2 ns
13.6 td1 Delay time: time delay from falling edge of NCS to data valid at SDO(2) 60 ns
13.7 tsusi Setup time at SDI: setup time of SDI before the rising edge of SCLK(2) 30 ns
13.8 td2 Delay time: time delay from falling edge of SCLK to data valid at SDO(2) 0 60 ns
13.9 thcs Hold time: time between the falling edge of SCLK and rising edge of NCS(2) 45 ns
13.10 thlcs SPI transfer inactive time (time between two transfers)(2) 250 ns
13.11 ttri Tri-state delay time: time between rising edge of NCS and SDO in tri-state(2) 30 ns
The maximum SPI clock tolerance is ±10%.
Ensured by characterization.
DRV3205-Q1 tim_SPI_LVSCV1.gif Figure 1. SPI Timing Parameters

Typical Characteristics

DRV3205-Q1 D001_SLVSCV1.gif
Figure 2. VS Quiescent Current Shutdown
DRV3205-Q1 D005_SLVSCV1.gif
Figure 4. Propagation Delay On Time vs Temperature
DRV3205-Q1 D002_SLVSCV1.gif
Figure 3. VS Quiescent Current Shutdown
DRV3205-Q1 D006_SLVSCV1.gif
Figure 5. Propagation Delay Off Time vs Temperature