The DRV3220-Q1 bridge driver is dedicated to automotive three-phase brushless DC motor control applications. The device provides six dedicated drivers for standard-level N-channel MOSFET transistors. A boost converter with an integrated FET provides the overdrive voltage, allowing full control on the power stages even for low battery voltage down to 4.75 V. The strong driver strength is suitable for high-current applications and programmable to limit peak output current.
The device incorporates robust FET protection and system monitoring functions like a Q&A watchdog and voltage monitors for I/O supplies and ADC reference voltages. Integrated internal diagnostic functions can be accessed and programmed through an SPI interface.
PART NUMBER | PACKAGE | BODY SIZE (NOM) |
---|---|---|
DRV3220-Q1 | HTQFP (48) | 7.00 mm × 7.00 mm |
DATE | REVISION | NOTES |
---|---|---|
February 2017 | * | Initial release. |
PIN | TYPE(1) | DESCRIPTION | |
---|---|---|---|
NO. | NAME | ||
1 | GLS3 | PWR | Gate low-side 3, connected to gate of external power MOSFET. |
2 | SLS3 | PWR | Source low-side 3, connected to external power MOSFET for gate discharge and VDS monitoring. |
3 | GHS3 | PWR | Gate high-side 3, connected to gate of external power MOSFET. |
4 | SHS3 | PWR | Source high-side 3, connected to external power MOSFET for gate discharge and VDS monitoring. |
5 | VSH | HVI_A | Sense high-side, sensing VS connection of the external power MOSFETs for VDS monitoring. |
6 | SHS2 | PWR | Source high-side 2, connected to external power MOSFET gate discharge and VDS monitoring. |
7 | GHS2 | PWR | Gate high-side 2, connected to gate of external power MOSFET. |
8 | SLS2 | PWR | Source low-side 2, connected to external power MOSFET for gate discharge and VDS monitoring. |
9 | GLS2 | PWR | Gate low-side 2, connected to gate of external power MOSFET. |
10 | TEST | HVI_A | Test mode input, during normal application connected to ground. |
11 | GLS1 | PWR | Gate low-side 1, connected to gate of external power MOSFET. |
12 | SLS1 | PWR | Source low-side 1, connected to external power MOSFET for gate discharge and VDS monitoring. |
13 | GHS1 | PWR | Gate high-side 1, connected to gate of external power MOS transistor. |
14 | SHS1 | PWR | Source high-side 1, connected to external power MOS transistor for gate discharge and VDS. |
15 | VS | Supply | Power-supply voltage (externally protected against reverse battery connection). |
16 | GNDA | GND | Analog ground. |
17 | ERR | LVO_D | Error (low active), Error pin to indicate detected error. |
18 | DRVOFF | HVI_D | Driver OFF (high active), secondary bridge driver disable. |
19 | RVSET | HVI_A | VDDIO / ADREF OV/UV configuration resister. |
20 | BOOST | Supply | Boost output voltage, used as supply for the gate drivers. |
21 | SW | PWR | Boost converter switching node connected to external coil and external diode. |
22 | NCS | HVI_D | SPI chip select. |
23 | GNDLS_B | GND | Boost GND to set current limit. Boost switching current goes through this pin through external resistor to ground. |
24 | EN | HVI_D | Enable (high active) of the device. |
25 | VDDIO | Supply | I/O supply voltage, defines the interface voltage of digital I/O, for example, SPI. |
26 | SCLK | HVI_D | SPI clock. |
27 | SDO | LVO_D | SPI data output. |
28 | SDI | HVI_D | SPI data input. |
29 | VCC3 | LVO_A | VCC3 regulator, for internal use only. TI recommends an external decoupling capacitor of 0.1 µF. External load < 100 µA. |
30 | GNDA | GND | Analog ground. |
31 | NU | — | Not used. Leave this pin open. |
32 | VCC5 | LVO_A | VCC5 regulator, for internal use only. Recommended external decoupling capacitor 1 µF. External load < 100 µA. |
33 | ADREF | LVI_A | ADC reference of MCU. Connect to VDDIO |
34 | NU | — | Not used. Leave this pin open. |
35 | NU | — | Not used. Leave this pin open. |
36 | NU | — | Not used. Leave this pin open. |
37 | NU | — | Not used. Connect this pin to ground. |
38 | NU | — | Not used. Connect this pin to ground. |
39 | NU | — | Not used. Connect this pin to ground. |
40 | NU | — | Not used. Connect this pin to ground. |
41 | NU | — | Not used. Connect this pin to ground. |
42 | NU | — | Not used. Connect this pin to ground. |
43 | IHS3 | HVI_D | High-side input 3, digital input to drive the HS3. |
44 | IHS2 | HVI_D | Input HS 2, digital input to drive the HS2. |
45 | IHS1 | HVI_D | Input HS 1, digital input to drive the HS1. |
46 | ILS3 | HVI_D | Low-side input 3, digital input to drive the LS3. |
47 | ILS2 | HVI_D | Input LS 2, digital input to drive the LS2. |
48 | ILS1 | HVI_D | Input LS 1, digital input to drive the LS1. |
POS | MIN | MAX | UNIT | |||
---|---|---|---|---|---|---|
2.1 | DC voltage | VS, VSH | –0.3 | 60 | V | |
2.1a | VS | Negative voltages with minimum serial resistor 5 Ω, TA = 25°C | –5 | V | ||
2.1c | Negative voltages with minimum serial resistor 5 Ω, TA = 105°C | –2.5 | V | |||
2.1b | VSH | Negative voltages with minimum serial resistor 10 Ω, TA = 25°C | –5 | V | ||
2.1d | Negative voltages with minimum serial resistor 10 Ω, TA = 105°C | –2.5 | V | |||
2.2A | Gate high-side voltage | GHSx | –9 | 70 | V | |
2.2B | Source high-side voltage | SHSx | –9 | 70 | V | |
2.3 | Gate-source high-side voltage difference | GHSx-SHSx | Externally driven, internal limited, see position 5.4 in Electrical Characteristics | –0.3 | 15 | V |
2.4 | Gate low-side voltage | GLSx | –9 | 20 | V | |
2.5 | Source low-side voltage | SLSx | –9 | 7 | V | |
2.6 | Gate-source low-side voltage difference | GLSx-SLSx | Externally driven, internal limited, see position 5.5 in Electrical Characteristics | –0.3 | 15 | V |
2.7 | Boost converter | BOOST, SW | –0.3 | 70 | V | |
2.9 | Analog input voltage | VDDIO | –0.3 | 60 | V | |
2.9a | ADREF | –0.3 | 60 | V | ||
2.11 | RVSET | –0.3 | 60 | V | ||
2.10 | Digital input voltage | ILSx,IHSx, EN, DRVOFF, SCLK, NCS, SDI | –0.3 | 60 | V | |
2.13 | Difference between GNDA and GNDLS_B | GNDA, GNDLS_B | –0.3 | 0.3 | V | |
2.20 | Maximum slew rate of SHSx pins, SRSHS | –250 | 250 | V/µs | ||
2.21 | Analog and digital output voltages | ERR, SDO, RO | –0.3 | 6 | V | |
2.22 | Unused pins (connect to GND) | TEST | –0.3 | 0.3 | V | |
2.24 | Internal supply voltage | VCC5 | –0.3 | 6 | V | |
2.25 | VCC3 | –0.3 | 3.6 | V | ||
2.21A | Forced input and output current | ERR, SDO, RO | –10 | 10 | mA | |
2.24A | Short-to-ground current, IVCC5(3) | Internal current limit | 80 | mA | ||
2.26 | Short-to-ground current, IVCC3 | Limited by VCC5 | 80 | mA | ||
2.27 | Driver FET total gate charge (per FET), Qgmax | VS = 12 V, ƒPWM = 20 kHz, 6 FETs ON/OFF per PWM cycle | 200(4) | nC | ||
2.28 | VS = 24 V, ƒPWM = 20 kHz, 6 FETs ON/OFF per PWM cycle | 100(4) | nC | |||
2.14 | Operating virtual junction temperature, TJ | –40 | 150 | °C | ||
2.15 | Storage temperature, Tstg | –55 | 165 | °C |
POS | VALUE | UNIT | ||||
---|---|---|---|---|---|---|
2.17 | V(ESD) | Electrostatic discharge | Human-body model (HBM), per AEC Q100-002(1) | All pins | ±2000 | V |
Pins 4, 6, and 14 | ±4000 | |||||
2.18 | Charged-device model (CDM), per AEC Q100-011 | All pins | ±500 | |||
2.19 | Corner pins (1, 12, 13, 24, 25, 36, 37, and 48) | ±750 |
POS | MIN | NOM | MAX | UNIT | |||
---|---|---|---|---|---|---|---|
3.1 | VVS | Supply voltage, normal voltage operation | Full device functionality. Operation at VS = 4.75 V only when coming from higher VS. Minimum VS for startup = 4.85 V | 4.75 | 40 | V | |
3.2 | VVSLO | Supply voltage, logic operation | Logic functional (during battery cranking after coming from full device functionality) | 4 | 40 | V | |
3.3 | VVDDIO | Supply voltage for digital I/Os | 2.97 | 5.5 | V | ||
3.14 | VCC3 | Internal supply voltage | VS > 4 V, external load current <100 µA, decoupling capacitor typical 0.1 µF | 3(1) | 3.3 | V | |
3.17 | VCC5 | Internal supply voltage | VS > 6 V, external load current < 100 µA, decoupling capacitor typical 1 µF | 5.15 | 5.45 | V | |
3.6A | IVSn | VS quiescent current normal operation (boost converter enabled, drivers not switching) | Boost converter enabled, see and for SHSx/SLSx connections. EN_GDBIAS = 1 | 22 | mA | ||
3.61A | Boost converter enabled, see and for SHSx/SLSx connections. EN_GDBIAS = 0 | 22.3 | mA | ||||
3.6B | IBOOSTn | BOOST pin quiescent current normal operation (drivers not switching) | 4.75 V < VS < 20 V, TA = 25°C to 125°C | 9 | mA | ||
3.62B | 4.75 V < VS < 20 V, TA = –40°C | 10 | |||||
3.6C | 20 < VS < 40 V, TA = 25°C to 125°C | 9.5 | |||||
3.6C1 | 20 < VS < 40 V, TA = –40°C | 10.5 | |||||
3.61B | IVSn | VS quiescent additional current normal operation because of RVSET thermal voltage output enabled (boost converter enabled, drivers not switching) | THERMAL_RVSET_EN = 1 | 0.6 | mA | ||
3.6D | IBOOST,sw | BOOST pin additional load current because of switching gate drivers | Excluding FET gate charge current. 20-kHz all gate drivers switching at the same time. EN_GDBIAS = 1 | 4 | mA | ||
3.61D | Excluding FET gate charge current. 20-kHz all gate drivers switching at the same time. EN_GDBIAS = 0 | 5.4 | |||||
3.75 | IVSq_1 | VS quiescent current shutdown (sleep mode) 1 | VS = 14 V, no operation, TJ < 25°C, EN = Low, total leakage current on all supply connected pins | 20 | µA | ||
3.75a | IVSq_2 | VS quiescent current shutdown (sleep mode) 2 | VS = 14 V, no operation, TJ < 85°C, EN = Low, total leakage current on all supply connected pins | 30 | µA | ||
3.15 | IVCC3 | VCC3 output current | Intended for MCU ADC input | 0 | 100 | µA | |
3.18 | IVCC5 | VCC5 output current | Intended for MCU ADC input | 0 | 100 | µA | |
3.16 | CVCC3 | VCC3 decoupling capacitance | 0.075 | 0.1 | 0.2 | µF | |
3.19 | CVCC5 | VCC5 decoupling capacitance | 0.5 | 1 | 1.5 | µF | |
3.4 | D | Duty cycle of bridge drivers | 0% | 100% | |||
3.5 | ƒPWM | PWM switching frequency | 0 | 22(1) | kHz | ||
3.8 | TJ | Junction temperature | –40 | 150 | °C | ||
3.9 | TA | Operating ambient free-air temperature | With proper thermal connection | –40 | 125 | °C |
THERMAL METRIC(1) | DRV3220-Q1 | UNIT | |
---|---|---|---|
PHP (HTQFP) | |||
48 PINS | |||
RθJA | Junction-to-ambient thermal resistance | 25.7 | °C/W |
RθJC(top) | Junction-to-case (top) thermal resistance | 10.3 | °C/W |
RθJB | Junction-to-board thermal resistance | 6 | °C/W |
ψJT | Junction-to-top characterization parameter | 0.2 | °C/W |
ψJB | Junction-to-board characterization parameter | 5.9 | °C/W |
RθJC(bot) | Junction-to-case (bottom) thermal resistance | 0.3 | °C/W |
POS | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|---|---|
4.4 | ADREF / VDDIO | ||||||
4.4.3 | IADREF | ADREF bias current | ADREF = 3.3 V, pin to ground | 300 | µA | ||
4.4.4 | Vovadref | Overvoltage threshold, ADREF | ADREF: 3.3-V setting by RVSET resistor | 3.696 | 3.795 | 3.894 | V |
4.4.4a | ADREF: 5-V setting by RVSET resistor | 5.6 | 5.75 | 5.9 | V | ||
4.4.5 | Vuvadref | Undervoltage threshold, ADREF | ADREF: 3.3-V setting by RVSET resistor | 2.706 | 2.805 | 2.904 | V |
4.4.5a | ADREF: 5-V setting by RVSET resistor | 4.1 | 4.25 | 4.4 | V | ||
4.4.7 | Vovvddio | Overvoltage threshold, VDDIO | VDDIO: 3.3-V setting by RVSET resistor | 3.696 | 3.795 | 3.894 | V |
4.4.7a | VDDIO: 5-V setting by RVSET resistor | 5.6 | 5.75 | 5.9 | V | ||
4.4.8 | Vuvvddio | Undervoltage threshold, VDDIO | VDDIO: 3.3-V setting by RVSET resistor | 2.706 | 2.805 | 2.904 | V |
4.4.8a | VDDIO: 5-V setting by RVSET resistor | 4.1 | 4.25 | 4.4 | V | ||
4.4.10 | RRVSET33 | RVSET resistance | VDDIO = 3.3 V; ADREF = 3.3-V mode; STAT6 bit[3:0] = 4’b0001 | 135 | 150 | 165 | kΩ |
4.4.11 | RRVSET53 | VDDIO = 5 V; ADREF = 3.3-V mode; STAT6 bit[3:0] = 4’b0100 | 46 | 51 | 56.5 | kΩ | |
4.4.12 | RRVSET35 | VDDIO = 3.3 V; ADREF = 5-V mode; STAT6 bit[3:0] = 4’b1000 | 13.5 | 15 | 16.5 | kΩ | |
4.4.13 | RRVSET55 | VDDIO = 5 V; ADREF = 5-V mode; STAT6 bit[3:0] = 4’b0010 | 4.6 | 5.1 | 5.65 | kΩ | |
4.4.30 | RRVSETopen | RVSET resistor error detection | Open | 650 | kΩ | ||
4.4.31 | RRVSETshort | Short | 1.5 | ||||
4.4.32 | VRVSETn40 | RVSET output voltage | –40°C TJ, THERMAL_RVSET_EN = 1 | 1.67 | 1.745 | 1.82 | V |
4.4.33 | VRVSET25 | 25°C TJ, THERMAL_RVSET_EN = 1 | 1.445 | 1.535 | 1.625 | ||
4.4.34 | VRVSET125 | 125°C TJ, THERMAL_RVSET_EN = 1 | 1.085 | 1.195 | 1.305 | ||
VCC3 / VCC5 REGULATORS | |||||||
4.4.14 | VCC3 | VCC3 regulator output voltage | VS > 4 V | 3 | 3.15 | 3.3 | V |
4.4.15 | VCC3UV | VCC3 regulator undervoltage threshold | VS > 4 V | 2.7 | 2.85 | 3 | V |
4.4.16 | VCC3OV | VCC3 regulator overvoltage threshold(1) | VS > 4 V | 3.3 | 3.45 | 3.6 | V |
4.4.17 | VCC5_1 | VCC5 regulator output voltage 1 | VS > 6 V | 5.15 | 5.3 | 5.45 | V |
4.4.18 | VCC5_2 | VCC5 regulator output voltage 2 | 6 V > VS > 4.75 V | 4.6 | 5.45 | V | |
4.4.19 | VCC5UV | VCC5 regulator undervoltage threshold | VS > 4.75 V | 4.3 | 4.6 | V | |
4.4.20 | VCC5OV | VCC5 regulator overvoltage threshold | VS > 4.75 V | 5.45 | 5.6 | 5.75 | V |
5. | GATE DRIVER | ||||||
5.1 | VGS,low | Gate-source voltage low, high-side/low-side driver | Active pulldown, Iload = –2 mA | 0 | 0.2 | V | |
5.2 | RGSp | Passive gate-source resistance | Vgs ≤ 200 mV | 110 | 220 | 330 | kΩ |
5.3 | RGSsa | Semi-active gate-source resistance | In sleep mode, VGS > 2 V | 2 | 4 | kΩ | |
5.3b | IGSL01 | Low-side driver pullup/pulldown current | Gate driven low by gate driver, CURR1, 3 = 01, SPI configurable |
TYP × 0.65 | 0.65 | TYP × 1.35 | A |
5.3c | IGSL00 | Gate driven low by gate driver(1), CURR1, 3 = 00, SPI configurable |
TYP × 0.1 | 0.15 | TYP × 1.9 | A | |
5.3d | IGSL10 | Gate driven low by gate driver, CURR1, 3 = 11, SPI configurable |
TYP × 0.65 | 1.1 | TYP × 1.35 | A | |
5.3f | IGSH01 | High-side driver pullup/pulldown current | Gate driven low by gate driver, CURR0, 2 = 01, SPI configurable |
TYP × 0.65 | 0.65 | TYP × 1.35 | A |
5.3g | IGSH00 | Gate driven low by gate driver(1), CURR0, 2 = 00, SPI configurable |
TYP × 0.1 | 0.15 | TYP × 1.9 | A | |
5.3h | IGSH11 | Gate driven low by gate driver, CURR0, 2 = 11, SPI configurable |
TYP × 0.65 | 1.1 | TYP × 1.35 | A | |
5.3i | IGSHsd | High-side/low-side driver shutdown current | 2 | 30 | 70 | mA | |
5.4 | VGS,HS,high | High-side output voltage | Iload = –2 mA; 4.75 V < VS < 40 V | 9 | 13.4 | V | |
5.5 | VGS,LS,high | Low-side output voltage | Iload = –2 mA | 9 | 13.4 | V | |
5.27 | tDon | Propagation on delay time | After ILx/IHx rising edge, Cload = 10 nF, CURR1, 3 = 10, VGS = 1 V | 100 | 200 | 350 | ns |
5.31 | Adt | Accuracy of dead time | If not disabled in CFG1 | –15% | 15% | ||
5.32 | IHSxlk_1 | Source leak current, total leakage current of source pins | EN = L, SHSx = 1.5 V, TJ < 125°C | –5 | 5 | µA | |
5.32a | IHSxlk_2 | EN = L, SHSx = 1.5 V, 125°C < TJ < 150°C | –40 | 40 | µA | ||
5.29 | tDoff | Propagation off delay time(5) | ILx/IHx falling edge to VGS,LS,high(VGS,HS,high) – 1 V Ciss = 10 nF, CURR1,3 = 10, | 100 | 200 | 350 | ns |
5.30 | tDoffdiff | Propagation off delay time difference(5) | LSx to LSy and HSx to HSy Cload = 10 nF, CURR1,3 = 10, VGS,LS,high(VGS,HS,high) – 1 V | 50 | ns | ||
5.30a | tDon_Doff_diff | Difference between propagation on delay time and propagation off delay time(5) | For each gate driver in each channel: Cload = 10 nF, CURR1, 3 = 10, VGS = 1 V (rising), VGS,LS,high(VGS,HS,high) – 1 V (falling) |
150 | ns | ||
5.30c | tENoff | Propagation off (EN) deglitch time(5) | After falling edge on EN | 2.5 | 6 | 12 | µs |
5.30d | tSD | Time until gate drivers initiate shutdown(5) | After falling edge on EN | 12 | 24 | µs | |
5.30e | tSDDRV | Time until gate drivers initiate shutdown(5) | After rising edge on DRVOFF | 10 | µs | ||
6. | BOOST CONVERTER | ||||||
6.1 | VBOOST | Boost output voltage excluding switching ripple and response delay. | BOOST – VS voltage | 14 | 15 | 16.5 | V |
6.1b | VBOOSTOV | Boost output voltage overvoltage with respect GND | 64 | 67.5 | 70 | V | |
6.2 | IBOOST | Output current capability | External load current including external MOSFET gate charge current BOOST – VS > VBOOSTUV |
40 | mA | ||
6.3 | ƒBOOST | Switching frequency | BOOST – VS > VBOOSTUV; ensured by characterization(3) | 1.8 | 2.5 | 3 | MHz |
6.31 | BOOST – VS > VBOOSTUV; VS < 6 V; ensured by characterization (3) | 1.1 | 3 | ||||
6.4 | VBOOSTUV | Undervoltage shutdown level | BOOST – VS voltage | 7 | 8 | V | |
6.4a | VBOOSTUV2 | Undervoltage condition that device may enter RESET state | BOOST – GND voltage | 10 | V | ||
6.5 | tBCSD | Filter time for undervoltage detection | 5 | 6 | µs | ||
6.7 | VGNDLS_B,off | Voltage at GNDLS_B pin at which boost FET switches off because of current limit | 110 | 150 | 200 | mV | |
6.7a | tSW,off | Delay of the GNDLS_B current limit comparator | Specified by design | 100 | ns | ||
6.8 | ISW,fail | Internal second-level current limit | GNDLS_B = 0 V | 840 | 1600 | mA | |
6.9 | Rdson_BSTfet | Rdson resistance boost FET | VS ≥ 6; ISW = VGNDLS_B,off / 0.33 Ω | 0.25 | 1.5 | Ω | |
6.9a | VS < 6; ISW= VGNDLS_B,off / 0.33 Ω | 2 | Ω | ||||
7. | DIGITAL INPUTS | ||||||
7.1 | INL | Input low threshold | All digital inputs NCS, DRVOFF, ILSx, IHSx, SDI | VDDIO × 0.3 | V | ||
7.1a | ENH | EN input high threshold | VS > 4 V | 2.7 | V | ||
7.1b | ENL | EN input low threshold | VS > 4 V | 0.7 | V | ||
7.2 | INH | Input high threshold | All digital inputs NCS, DRVOFF, ILSx, IHSx, SDI | VDDIO × 0.7 | V | ||
7.3 | Inhys | Input hysteresis | All digital inputs EN, NCS, DRVOFF, ILSx, IHSx, SDI, VDDIO = 5 V | 0.3 | 0.4 | V | |
7.3a | All digital inputs EN, NCS, DRVOFF, ILSx, IHSx, SDI, VDDIO = 3.3 V | 0.2 | 0.3 | V | |||
7.4 | Rpd,EN | Input pulldown resistor at EN pin | EN | 140 | 200 | 360 | kΩ |
7.4a | tdeg,ENon | Power-up time after EN pin high from sleep mode to active mode | ERR = L → H | 5 | ms | ||
7.5 | Rpullup | Input pullup resistance | NCS, DRVOFF | 200 | 280 | 400 | kΩ |
7.6 | Rpulldown | Input pulldown resistance | ILSx, IHSx, SDI , SCLK Input voltage = 0.1 V | 100 | 140 | 200 | kΩ |
7.6a | Rpulldown | Input pulldown current | ILSx, IHSx, SDI, SCLK Input voltage = VDDIO | 4 | 50 | µA | |
8. | DIGITAL OUTPUTS | ||||||
8.1 | OH1 | Output high voltage 1 | All digital outputs: SDO, I = ±2 mA; VDDIO in functional range(6) | VDDIO × 0.9 | V | ||
8.2 | OL1 | Output low voltage 1 | All digital outputs: SDO, I = ±2 mA; VDDIO in functional range | VDDIO × 0.1 | V | ||
8.1 | OH2 | Output high voltage 2 | ERR I = –0.2 mA; VDDIO in functional range | VDDIO × 0.9 | V | ||
8.2 | OL2 | Output low voltage 2 | ERR I = +0.2 mA; VDDIO in functional range | VDDIO × 0.1 | V | ||
9. | VDS, VGS, MONITORING | ||||||
9.1 | VSCTH | VDS short-circuit threshold range | If not disabled in CFG1 | 0.1 | 2 | V | |
9.2 | Avds | Accuracy of VDS monitoring | 0.1-V to 0.5-V threshold setting | –50 | 50 | mV | |
0.6-V to 2-V threshold setting | –10% | 10% | |||||
9.3 | tVDS | Detection filter time | Only rising edge of VDS comparators are filtered | 5 | µs | ||
9.4 | Vgserr+_1 | VGS error detection 1 | STAT7, IHSx (ILSx) = H | 7 | 8.5 | V | |
9.5 | Vgserr– | VGS error detection | STAT7, IHSx (ILSx) = L | 2 | V | ||
9.6 | tVGS | Detection filter time | CFG6[5:4] | 1.0 | µs | ||
9.6a | tVGSm | Detection mask time | CFG6[2:0] | 2.5 | µs | ||
10. | THERMAL SHUTDOWN | ||||||
10.1 | Tmsd0 | Thermal recovery | Specified by characterization | 130 | 153 | 178 | °C |
10.2 | Tmsd1 | Thermal warning | Specified by characterization | 140 | 165 | 190 | °C |
10.3 | Tmsd2 | Thermal global reset | Specified by characterization | 170 | 195 | 220 | °C |
10.4 | Thmsd | Thermal shutdown×2 hysteresis | Specified by characterization | 40 | °C | ||
10.5 | tTSD1 | Thermal warning filter time | Specified by characterization | 40 | 45 | 50 | µs |
10.6 | tTSD2 | Thermal shutdown×2 filter time | Specified by characterization | 2.5 | 6 | 12 | µs |
12. | VS MONITORING | ||||||
12.1 | VVS,OVoff0 | Overvoltage shutdown level range(2) | Programmable CFG5 mode1, 12-V/24-V mode | 29 | 38 | V | |
12.1a | VVS,OVoff1 | Overvoltage shutdown level(2) | 29-V threshold setting | 27.5 | 29 | 30.5 | V |
12.1b | VVS, OVon1 | Recovery level form overvoltage shutdown(2) | 29-V threshold setting | 26.5 | 28 | 29.5 | V |
12.1c | VVS,OVoff2 | Overvoltage shutdown level(2) | 33-V threshold setting | 32 | 33.5 | 35 | V |
12.1d | VVS, OVon2 | Recovery level form overvoltage shutdown(2) | 33-V threshold setting | 31 | 32.5 | 34 | V |
12.1e | VVS,OVoff3 | Overvoltage shutdown level(2) | 38-V threshold setting | 36.5 | 38 | 39.5 | V |
12.1f | VVS, OVon3 | Recovery level form overvoltage shutdown(2) | 38-V threshold setting | 35.5 | 37 | 38.5 | V |
12.2 | VVS,UVoff | Undervoltage shutdown level(2) | VS is falling from higher voltage than 4.75 V | 4.5 | 4.75 | V | |
12.2a | VVS,UVon | Recovery level form undervoltage shutdown(2) | Minimum VS for device startup | 4.6 | 4.85 | V | |
12.3 | tVS,SHD | Filter time for overvoltage/undervoltage shutdown | 5 | 6 | µs |
POS 13 | MIN | NOM | MAX | UNIT | ||
---|---|---|---|---|---|---|
13.1 | ƒSPI | SPI clock (SCLK) frequency | 4(1) | MHz | ||
13.2 | tSPI | SPI clock period(2) | 250 | ns | ||
13.3 | thigh | High time: SCLK logic high duration(2) | 90 | ns | ||
13.4 | tlow | Low time: SCLK logic low duration(2) | 90 | ns | ||
13.5 | tsucs | Setup time NCS: time between falling edge of NCS and rising edge of SCLK(2) | tSPI / 2 | ns | ||
13.6 | td1 | Delay time: time delay from falling edge of NCS to data valid at SDO(5) | 60 | ns | ||
13.7 | tsusi | Setup time at SDI: setup time of SDI before the rising edge of SCLK(2) | 30 | ns | ||
13.8 | td2 | Delay time: time delay from falling edge of SCLK to data valid at SDO(5) | 0 | 60 | ns | |
13.9 | thcs | Hold time: time between the falling edge of SCLK and rising edge of NCS(2) | 45 | ns | ||
13.10 | thlcs | SPI transfer inactive time (time between two transfers)(2) | 250 | ns | ||
13.11 | ttri | Tri-state delay time: time between rising edge of NCS and SDO in tri-state(2) | 30 | ns |
The DRV3220-Q1 is designed to control 3-phase brushless DC motors in automotive applications using pulse-width modulation. Three high-side and three low-side gate drivers can be switched individually with low propagation delay. The input logic prevents simultaneous activation of the high-side and low-side driver of the same channel. A configuration and status register can be accessed through a SPI communication interface.
The SPI slave interface is used for serial communication with the external SPI master (external MCU). The SPI communication starts with the NCS falling edge and ends with NCS rising edge. The NCS high level keeps the SPI slave interface in reset state, and the SDO output in tri-state.
The address mode transfer is an 8-bit protocol. Both SPI slave and SPI master transmit the MSB first.
NOTE:
SPI master (MCU) and SPI slave (DRV3220-Q1) sample received data on the falling SCLK edge and transmit on the rising SCLK edge.After the NCS falling edge, the first word of 7 bits are address bits followed by the RW bit. During first address transfer, the device returns the STAT1 register on SDO.
Each complete 8-bit frame will be processed. If NCS goes high before a multiple of 8 bits is transferred, the bits are ignored.
Bit | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |
---|---|---|---|---|---|---|---|---|
Function | ADDR6 | ADDR5 | ADDR4 | ADDR3 | ADDR2 | ADDR1 | ADDR0 | RW |
RW = 0: Read access. The SPI master performs a read access to selected register. During following SPI transfer, the device returns the requested register read value on SDO, and device interprets SDI bits as a next address transfer.
RW = 1: Write access. The master performs a write access on the selected register. The slave updates the register value during next SPI transfer (if followed immediately) and returns the current register value on SDO.
Bit | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |
---|---|---|---|---|---|---|---|---|
Function | DATA7 | DATA6 | DATA5 | DATA4 | ADDR3 | DATA2 | DATA1 | DATA0 |
The table shows data value encoding scheme during a write access It is possible to mix the two access modes (write and read access) during one SPI communication sequence (NCS = 0). The SPI communication can be terminated after single 8-bit SPI transfer by asserting NCS = 1. Device returns STAT1 register (for the very first SPI transfer after power-up) or current register value that was addressed during SPI Transfer Address Phase.
Bit | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |
---|---|---|---|---|---|---|---|---|
Function | REG7 | REG6 | REG5 | REG4 | REG3 | REG2 | REG1 | REG0 |
Figure 8 shows a complete 16-bit SPI frame. Figure 9, Figure 10, Figure 11, Figure 12, Figure 13, and Figure 14 show the frame examples.
Address | Name | Reset Value | CRC Check | Access State(1) | Reset Event(2)
(bit wide exception) |
Section |
---|---|---|---|---|---|---|
0×01 | Configuration register 0 (CFG0) | 8'h3F | Yes | W/R : D, A([6:3]) R : A(7,[2:0], SF |
RST1-4 | |
0×02 | Configuration register 1 (CFG1) | 8'h3F | Yes | W/R: D R: A, SF |
RST1-4 | |
0×04 | HS 1/2/3 drive register (CURR0) ON | 8'h00 | Yes | W/R: D R: A, SF |
RST1-4 | |
0×05 | LS 1/2/3 drive register (CURR1) ON | 8'h00 | Yes | W/R: D R: A, SF |
RST1-4 | |
0×06 | HS 1/2/3 drive register (CURR2) OFF | 8'h00 | Yes | W/R: D R: A, SF |
RST1-4 | |
0×07 | LS 1/2/3 drive register (CURR3) OFF | 8'h00 | Yes | W/R: D R: A, SF |
RST1-4 | |
0×08 | Safety/error configuration register (SECR1) | 8'hC0 | Yes | W/R: D R: A, SF |
RST1 | |
0×09 | Safety function configuration register (SFCR1) | 8'h80 | Yes | W/R: D R: A, SF |
RST1-3 | |
0×0A | Status register 0 (STAT0) | 8'h00 | No | R: D, A, SF | RST1-4 | |
0×0B | Status register 1 (STAT1) | 8'h80 | No | R: D, A, SF | RST1-3 | |
0×0C | Status register 2 (STAT2) | 8'h00 | No | R: D, A, SF | RST1-3 | |
0×0D | Status register 3 (STAT3) | 8'h03 | No | R: D, A, SF | RST1-3 | |
0×0E | Status register 4 (STAT4) | 8'h00 | No | R: D, A, SF | RST1-3 | |
0×0F | Status register 5 (STAT5) | 8'h03 | No | R: D, A, SF | RST1-3 (Bit[4]:RST1) |
|
0×10 | Status register 6 (STAT6) | 8'h00 | No | R: D, A, SF | RST1-3 | |
0×11 | Status register 7 (STAT7) | 8'h00 | No | R: D, A, SF | RST1-4 | |
0×12 | Status register 8 (STAT8) | 8'h00 | No | R: D, A, SF | RST1-4 (Bit[0]:RST1) |
|
0×13 | Safety error status (SAFETY_ERR_STAT) | 8'h00 | No | R: D, A, SF | RST1-3 (Bit[3:1]:RST1) |
|
0×14 | Status register 9 (STAT9) | 8'h00 | No | R: D, A, SF | RST1-3 | |
0×15 | Reserved 1 | 8'h00 | No | W/R: D, A, SF | RST1-3 | |
0×16 | Reserved 2 | 8'h00 | No | W/R: D, A, SF | RST1-3 | |
0×1E | SPI transfer write CRC register (SPIWR_CRC) | 8'h00 | No | W/R: D, A, SF | RST1-3 | |
0×1F | SPI transfer read CRC register (SPIRD_CRC) | 8'hFF | No | R: D, A, SF | RST1-3 | |
0×20 | SAFETY_CHECK_CTRL register ( SFCC1) | 8'h01 | No | W/R: D R: A, SF |
RST1-3 | |
0×21 | CRC control register (CRCCTL) | 8'h00 | No | W/R: D, A R: SF |
RST1-3 | |
0×22 | CRC calculated check sum register (CRCCALC) | N/A | No | W/R: D R: A, SF |
RST1-3 | |
0×23 | Reserved 3 | 8'h00 | No | W/R: D, A, SF | RST1-3 | |
0×24 | HS/LS read back (RB0) | 8'h00 | No | R: D, A, SF | RST1-3 | |
0×25 | HS/LS count control (RB1) | 8'h00 | No | W/R: D, A R: SF |
RST1-4 | |
0×26 | HS/LS count (RB2) | 8'h00 | No | R: D, A, SF | RST1-4 | |
0×27 | Configuration register 3 (CFG3) | 8'hAB | Yes | W/R: D R: A, SF |
RST1-4 | |
0×28 | Configuration register 4 (CFG4) | 8'h00 | Yes | W/R: D R: A, SF |
RST1-4 | |
0×29 | Configuration register 5 (CFG5) | 8'hAB | Yes | W/R: D R: A, SF |
RST1-3 | |
0×2A | CSM unlock (CSM_UNLOCK1) | 8'h00 | No | W/R: D R: A, SF |
RST1-4 | |
0×2B | CSM unlock (CSM_UNLOCK2) | 8'h3F | No | W/R: D R: A, SF |
RST1-4 | |
0×2C | Reserved 4 | 8'h00 | Yes | W/R: D R: A, SF |
RST1-4 | |
0×2D | Safety BIST control register 1 (SAFETY_BIST_CTL1) | 8'h00 | Yes | W/R: D R: SF, A |
RST1-3 | |
0×2E | SPI test register (SPI_TEST) | 8'h00 | No | W/R: D, A, SF | RST1-4 | |
0×2F | Reserved 5 | 8'h00 | No | W/R: D, A, SF | RST1-3 | |
0×30 | Safety BIST control register 2 (SAFETY_BIST_CTL2) | 8'h00 | Yes | W/R: D R: SF, A |
RST1-3 (Bit[5]:RST1) |
|
0×31 | Watch dog timer configuration register (WDT_WIN1_CFG) | 8'h02 | Yes | W/R: D R: SF, A |
RST1-4 | |
0×32 | Watch dog timer configuration register (WDT_WIN2_CFG) | 8'h08 | Yes | W/R: D R: SF, A |
RST1-4 | |
0×33 | Watch dog timer TOKEN register (WDT_TOKEN_FDBCK) | 8'h04 | Yes | W/R: D R: SF, A |
RST1 | |
0×34 | Watch dog timer TOKEN register (WDT_TOKEN_VALUE) | 8'h40 | No | R: D, SF, A | RST1-4 | |
0×35 | Watch dog timer ANSWER register (WDT_ANSWER) | 8'h00 | No | W/R: D, A, SF | RST1-4 | |
0×36 | Watch dog timer status register (WDT_STATUS) | 8'hC0 | No | R: D, A, SG | RST1-4 | |
0×37 | Watch dog failure detection configuration register (WD_FAIL_CFG) | 8'hEC | Yes | W/R: D R: SF, A |
RST1-4 | |
0×38 | Configuration register 6 (CFG6) | 8'h10 | Yes | W/R: D R: A, SF |
RST1-4 | |
0×39 | Configuration register 7 (CFG7) | 8'h13 | Yes | W/R : D R : A, SF |
RST1-4 | |
0×3A | Configuration register 8 (CFG8) | 8'h20 | Yes | W/R : D R : A, SF |
RST1-4 | |
0×3B | Reserved 6 | 0 | — | — | — |