SLVSDC7G April   2017  – July 2024 DRV5032

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Device Comparison
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Magnetic Characteristics
    7. 6.7 Typical Characteristics
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Magnetic Flux Direction
      2. 7.3.2 Device Version Comparison
        1. 7.3.2.1 Magnetic Threshold
        2. 7.3.2.2 Magnetic Response
        3. 7.3.2.3 Output Type
        4. 7.3.2.4 Sampling Rate
      3. 7.3.3 Hall Element Location
    4. 7.4 Device Functional Modes
  9. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1 Output Type Tradeoffs
    2. 8.2 Typical Applications
      1. 8.2.1 General-Purpose Magnet Sensing
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
        3. 8.2.1.3 Application Curve
      2. 8.2.2 Three-Position Switch
        1. 8.2.2.1 Design Requirements
        2. 8.2.2.2 Detailed Design Procedure
        3. 8.2.2.3 Application Curve
    3. 8.3 Best Design Practices
    4. 8.4 Power Supply Recommendations
    5. 8.5 Layout
      1. 8.5.1 Layout Guidelines
      2. 8.5.2 Layout Examples
  10. Device and Documentation Support
    1. 9.1 Documentation Support
      1. 9.1.1 Related Documentation
    2. 9.2 Receiving Notification of Documentation Updates
    3. 9.3 Support Resources
    4. 9.4 Trademarks
    5. 9.5 Electrostatic Discharge Caution
    6. 9.6 Glossary
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • DBZ|3
  • DMR|4
  • LPG|3
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Layout Guidelines

Magnetic fields pass through most nonferromagnetic materials with no significant disturbance. It is common practice to embed Hall effect sensors within plastic or aluminum enclosures and sensing magnets on the outside. Magnetic fields also easily pass through most printed-circuit boards, which makes placing the magnet on the opposite side possible.