SLVSGJ9 May   2024 DRV7308

ADVANCE INFORMATION  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Absolute Maximum Ratings
  7. ESD Ratings
  8. Recommended Operating Conditions
  9. Thermal Information
  10. Electrical Characteristics
  11. 10Timing Diagrams
  12. 11Typical Characteristics
  13. 12Detailed Description
    1. 12.1 Overview
    2. 12.2 Functional Block Diagram
    3. 12.3 Feature Description
      1. 12.3.1 Output Stage
      2. 12.3.2 Input Control Logic
      3. 12.3.3 ENABLE (EN) Pin Function
      4. 12.3.4 Temperature Sensor Output (VTEMP)
      5. 12.3.5 Brake Function
      6. 12.3.6 Slew Rate Control (SR)
      7. 12.3.7 Dead Time
      8. 12.3.8 Current Limit Functionaity (ILIMIT)
      9. 12.3.9 Pin Diagrams
        1. 12.3.9.1 Four-Level Input Pin
        2. 12.3.9.2 Open-Drain Pin
        3. 12.3.9.3 Logic-Level Input Pin (Internal Pulldown)
    4. 12.4 Protections
      1. 12.4.1 GVDD Undervoltage Lockout
      2. 12.4.2 Bootstrap Undervoltage Lockout
      3. 12.4.3 Current Limit Protection
      4. 12.4.4 GaNFET Overcurrent Protection
      5. 12.4.5 Thermal Shutdown (OTS)
  14. 13Layout
    1. 13.1 Layout Guidelines
    2. 13.2 Layout Example
  15. 14Revision History
  16. 15Mechanical, Packaging, and Orderable Information
    1. 15.1 Tape and Reel Information

Package Options

Mechanical Data (Package|Pins)
  • REN|68
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Electrical Characteristics

TJ  = –40°C to 150°C, VGVDD = 15V, EN = High (unless otherwise noted). Typical limits apply for TA = 25°C, VGVDD = 15V
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
GaN POWER TRANSISTOR
RDS(ON) GaN transistor on resistance VGVDD = 15V, IOUTx = 1A,TJ = 25oC, 205 320 mΩ
RDS(ON) GaN transistor on resistance VGVDD = 15V, IOUTx = 1A, TJ = 150oC,  370 mΩ
VSD Third-quadrant mode source-drain voltage INx = 0V, ISD = 0.1A, TJ = 25oC 1.5 V
VSD Third-quadrant mode source-drain voltage INx = 0V, ISD = 4A, TJ = 25oC 2.8 V
QRR Reverse recovery charge VR = 300 V, ISD = 4 A, dISD/dt = 0.2 A/ns 0 nC
SWITCHING CHARACTERISTICS
SR Phase pin slew rate switching low to high (Rising from 20 % to 80 %) VVM= 300V, SR setting = 0 5 V/ns
SR Phase pin slew rate switching high to low (Falling from 80 % to 20 %) VVM= 300V, SR setting = 0 5 V/ns
SR Phase pin slew rate switching low to high (Rising from 20 % to 80 %) VVM= 300V, SR setting = 1 10 V/ns
SR Phase pin slew rate switching high to low (Falling from 80 % to 20 %) VVM= 300V, SR setting = 1 10 V/ns
SR Phase pin slew rate switching low to high (Rising from 20 % to 80 %) VVM= 300V, SR setting = 2 20 V/ns
SR Phase pin slew rate switching high to low (Falling from 80 % to 20 %) VVM= 300V, SR setting = 2 20 V/ns
SR Phase pin slew rate switching low to high (Rising from 20 % to 80 %) VVM= 300V, SR setting = 3 40 V/ns
SR Phase pin slew rate switching high to low (Falling from 80 % to 20 %) VVM= 300V, SR setting = 3 40 V/ns
tpd,on Propagation delay, turn on VINHx, VINLx = logic low to high, VVM = 300V, ID = 4A, SR = 0 125 ns
tdelay,on Turn on delay time VINHx, VINLx = logic low to high, VVM = 300V, ID = 4A, SR = 0 75 ns
tpd,off Propagation delay, turn off VINHx, VINLx = logic high to low, VVM = 300V, ID = 4A, SR = 0 135 ns
tdelay,off Turn off delay time VINHx, VINLx = logic high to low, VVM = 300V, ID = 4A, SR = 0 75 ns
tDEAD Output dead time (high to low) VVM = 300V, IOUTx = 4A, Current going out of phase node (OUTx) 40 ns
tDEAD Output dead time (high to low) VVM = 300V, IOUTx = 4A, Current going in to phase node (OUTx), SR = 0 100 ns
tDEAD Output dead time (high to low) VVM = 300V, IOUTx = 4A, Current going in to phase node (OUTx), SR = 1 or 2 or 3 100 ns
tDEAD Output dead time (low to high) VVM = 300V, IOUTx = 4A, Current going in to phase node (OUTx) 40 ns
tMIN_PULSE Minimum input  pulse width changing the output low-high-low VGVDD = 15V, VVM = 300V 50 ns
tMIN_PULSE Minimum input  pulse width changing the output high-low-high VGVDD = 15V, VVM = 300V 50 ns
tstart Start up time  VGVDD > VGVDD_UV_ON. EN = low to high, INLx = 1, low side GaNFET turns ON 2 ms
toff Device turn off time - to sleep VGVDD > VGVDD_UV_ON. EN = high to low 40 80 us
tclr_flt Time to clear any latched fault using EN EN = low pulse witdth 20 40 us
toff Device turn off time- gate driver off VGVDD > VGVDD_UV_ON. EN = high to low, INLx = 1, low side GaNFET turns OFF 500 ns
GVDD POWER SUPPLY
IGVDD,Q GVDD operating curent, driver enabled, no switching EN = High, VVM = 300V, VGVDD = 15V, INx = 0 4 mA
IGVDD,3SW GVDD average operating curent, driver enabled, GaN switching, No load at OUTx pins EN = High, Fsw = 20kHz, 3-half bridge switching at 50% complimentary PWM, VVM = 300V, VGVDD = 15V, SR = 0 6 mA
VGVDD_UV_ON GVDD undervoltage turn on threshold GVDD rising 10 V
VGVDD_UV_OFF GVDD undervoltage turn off threshold GVDD falling 9 V
VGVDD_UV_HYS GVDD undervoltge detection hysterisis  GVDD rising to falling threshold 500 mV
tUVLO_GVDD GVDD undervoltage deglitch time 20 µs
BOOTSTRAP POWER SUPPLY
RDS_ BST Bootsrtap rectifier on resistance VGVDD = 15V, VVM = 300V 30
ILMT_BST Bootstrap rectifier current limit EN = High, VGVDD = 15V, VVM = 300V, INLx = High, INHx = Low, VBOOTx - VOUTx = 12V 150 250 mA
IBST_PK Bootstrap rectifier peak transient current EN = High, VGVDD = 15V, VVM = 300V, INLx = High, INHx = Low, VBOOTx - VOUTx = 0 V 350 mA
IBST_Q Bootstrap quiescent current EN = High, INHx = Low, INLx = Low, VGVDD = 15V, VBOOTx - VOUTx = 12V 100 µA
IBST_Q Bootstrap quiescent current EN = High, INHx = High, INLx = Low, VGVDD = 15V, VBOOTx - VOUTx = 12V 350 µA
VBST_UV_ON Bootstrap supply undervoltage -turn on 9 V
VBST_UV_OFF Bootstrap supply undervoltage -turn off 8 V
VBST_UV_HYS Bootstrap supply undervoltage -hysterisis 500 mV
tBST_UV Bootstrap supply undervoltage deglitch time 20 µs
LOGIC-LEVEL INPUTS (EN, INHx, INLx, BRAKE)
VIL Input logic low voltage INHx, INLx, BRAKE, EN 0.8 V
VIH Input logic high voltage INHx, INLx, BRAKE, EN 2.2 V
VHYS Input logic hysteresis INHx, INLx, BRAKE, EN 400 mV
IIL Input logic low current (INHx, INLx, BRAKE, EN) VI = 0 V -1 1 µA
IIL Input logic low current (BRAKE, EN) VI = 0 V -1 1 µA
RPD Input pulldown resistance INHx, INLx, EN 70 100 130
RPD Input pulldown resistance BRAKE 15 20 25
tdeg Input logic deglitch time INHx, INLx 25 50 ns
tdeg Input logic deglitch time EN 150 400 ns
tdeg Input logic deglitch time BRAKE 1200 2000 ns
MULTI-LEVEL INPUT (SR)
RL1 SR setting = 0 Tied to PGND 0 1 kΩ
RL2 SR setting = 1 Tied to GVDD 0 1 kΩ
RL3 SR setting =2 R tied to PGND (R = 5 kΩ to 15 kΩ) 5 15  kΩ
RL4 SR setting = 3 R tied to PGND (R = 40 kΩ to 100 kΩ) 40 100 kΩ
OPEN-DRAIN OUTPUTS (HV_nFAULT)
VOL Output logic low voltage IOD = 5 mA 0.4 V
IOH Output logic high current VOD = 5 V -1 1 µA
COD Output capacitance 30 pF
GaN PREDRIVER PROTECTION
IOCP_GaN Overcurrent detection threshold VGVDD = 15V, VVM = 300V, TJ=25oC 7.5 A
IOCP_GaN Overcurrent detection threshold VGVDD = 15V, VVM = 300V, TJ=125oC 5 A
IOCP_GaN_BT Blanking time (including deglitch) VGVDD = 15V, VVM = 300V 150 ns
IOCP_GaN_PD Propagation delay (to FET turn off) VGVDD = 15V, VVM = 300V 50 ns
TSD_RISE Thermal shutdown rising Die temperature (TJ ) 145 165 185 oC
TSD_FALL Thermal shutdown falling Die temperature (TJ ) 125 145 165 oC
TSD_HYST Thermal shutdown hysteresis Die temperature (TJ ) 20 oC
CURRENT LIMIT COMPARATOR
Ib Input bias current (ILIMIT) VILIMIT = 0.5V 1 µA
Voff Input voltage offset ±2.5 mV
VILIMIT_DIS ILIMIT to disable threshold minimum voltage 2.2 2.5 V
VILIMIT Voltage range at ILIMIT 2 V
tblank Over current detection blanking on all SLx inputs, from any INHx/INLx turn on/off  400 620 ns
tdeglitch Overcurrent detection de-glitch time 190 330 ns
tfilter Input RC filter time (SLx) VSLx = 0 to 1V  step, VILIMIT = 0.63V 250 450 ns
tfilter Input RC filter time (ILIMIT) VILIMIT = 1 to 0V step, VSLx = 0.37V 600 1000 ns
tpd_OFF Over current detection to all GaN turn off delay VILIMIT = 0.63V, VSLx = 0 to 1V  step, INx = constant 1.2 µs
tpd_FAULT Over current detection to HV_nFAULT pin report delay VILIMIT = 0.63V, VSLx = 0 to 1V  step, INx =constant 1 µs
tF_CLR Fault clear time after over current detection 40 65 µs
OPERATIONAL AMPLIFIER
VLINEAR Output voltage swing RL = 10k to GND 0.02 4.9 V
GBW Gain bandwidth product RL= 10k, G = +1 11 MHz
VSR_opamp Output voltage slew rate RL= 10k, G = +1 15 V/µs
tset Settling time to ±1% 2-V step , G = +1, CL = 130 pF, RL = 10k 0.4 µs
AOL Open-loop voltage gain 0.04 V < VAMPOUT < 4.8 V, RL = 10 kΩ to GND 106 dB
φm Phase margin G = +1, RL = 10k 60 o
VCOM Common mode input range 0 5 V
VOFF Input offset voltage error TA = –40°C to 125°C ±1 mV
VDRIFT Drift offset TA = –40°C to 125°C ±0.5 µV/oC
Ibias Input bias current VAMPIN- = VAMPIN+ = 2.5V ±100 nA
Ibias_off Input bias offset current VAMPIN- = VAMPIN+ = 2.5V ±10 nA
CMRR Common mode rejection ratio – 0.1 V < VCM < 5 V, TA = –40°C to 125°C 96 dB
ISC_opamp Short-circuit current ±20 mA
Zo Open-loop output impedance f = 5 MHz 250
CL Capacitive load drive 130 pF
TEMPERATURE SENSOR
VT Temperature sense element output (VTEMP) voltage TA = 25°C 1.98 V
RT Load resistance on VTEMP pin 90 kΩ
CT Maximum load capacitance at VTEMP pin 130 pF