SLVSH22 May   2024 DRV8000-Q1

ADVANCE INFORMATION  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Device Comparison
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings Auto
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information RGZ package
    5. 6.5 Electrical Characteristics
    6. 6.6 Timing Requirements
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 External Components
    4. 7.4 Feature Description
      1. 7.4.1 Heater MOSFET Driver
        1. 7.4.1.1 Heater MOSFET Driver Control
        2. 7.4.1.2 Heater MOSFET Driver Protection
          1. 7.4.1.2.1 Heater SH_HS Internal Diode
          2. 7.4.1.2.2 Heater MOSFET VDS Overcurrent Protection (HEAT_VDS)
          3. 7.4.1.2.3 Heater MOSFET Open Load Detection
      2. 7.4.2 High-side Drivers
        1. 7.4.2.1 High-side Driver Control
          1. 7.4.2.1.1 High-side Driver PWM Generator
          2. 7.4.2.1.2 Constant Current Mode
          3. 7.4.2.1.3 OUT7 HS ITRIP Behavior
          4. 7.4.2.1.4 High-side Drivers - Parallel Outputs
        2. 7.4.2.2 High-side Driver Protection Circuits
          1. 7.4.2.2.1 High-side Drivers Internal Diode
          2. 7.4.2.2.2 High-side Driver Over Current Protection
          3. 7.4.2.2.3 High-side Driver Open Load Detection
      3. 7.4.3 Electro-chromic Glass Driver
        1. 7.4.3.1 Electro-chromic Driver Control
        2. 7.4.3.2 Electro-chromic Driver Protection
      4. 7.4.4 Half-bridge Drivers
        1. 7.4.4.1 Half-bridge Control
        2. 7.4.4.2 Half-bridge ITRIP Regulation
        3. 7.4.4.3 Half-bridge Protection and Diagnostics
          1. 7.4.4.3.1 Half-bridge Off-State Diagnostics (OLP)
          2. 7.4.4.3.2 Half-Bridge Active Open Load Detection (OLA)
          3. 7.4.4.3.3 Half-Bridge Over-Current Protection
      5. 7.4.5 Gate Drivers
        1. 7.4.5.1 Input PWM Modes
          1. 7.4.5.1.1 Half-Bridge Control
          2. 7.4.5.1.2 H-Bridge Control
          3. 7.4.5.1.3 DRVOFF - Gate Driver Shutoff Pin
        2. 7.4.5.2 Smart Gate Driver - Functional Block Diagram
          1. 7.4.5.2.1  Smart Gate Driver
          2. 7.4.5.2.2  Functional Block Diagram
          3. 7.4.5.2.3  Slew Rate Control (IDRIVE)
          4. 7.4.5.2.4  Gate Driver State Machine (TDRIVE)
            1. 7.4.5.2.4.1 tDRIVE Calculation Example
          5. 7.4.5.2.5  Propagation Delay Reduction (PDR)
          6. 7.4.5.2.6  PDR Pre-Charge/Pre-Discharge Control Loop Operation Details
            1. 7.4.5.2.6.1 PDR Pre-Charge/Pre-Discharge Setup
          7. 7.4.5.2.7  PDR Post-Charge/Post-Discharge Control Loop Operation Details
            1. 7.4.5.2.7.1 PDR Post-Charge/Post-Discharge Setup
          8. 7.4.5.2.8  Detecting Drive and Freewheel MOSFET
          9. 7.4.5.2.9  Automatic Duty Cycle Compensation (DCC)
          10. 7.4.5.2.10 Closed Loop Slew Time Control (STC)
            1. 7.4.5.2.10.1 STC Control Loop Setup
        3. 7.4.5.3 Tripler (Double-Stage) Charge Pump
        4. 7.4.5.4 Wide Common Mode Differential Current Shunt Amplifier
        5. 7.4.5.5 Gate Driver Protection Circuits
          1. 7.4.5.5.1 MOSFET VDS Overcurrent Protection (VDS_OCP)
          2. 7.4.5.5.2 Gate Driver Fault (VGS_GDF)
          3. 7.4.5.5.3 Offline Short Circuit and Open Load Detection (OOL and OSC)
      6. 7.4.6 Sense Output (IPROPI)
      7. 7.4.7 Protection Circuits
        1. 7.4.7.1 Fault Reset (CLR_FLT)
        2. 7.4.7.2 DVDD Logic Supply Power on Reset (DVDD_POR)
        3. 7.4.7.3 PVDD Supply Undervoltage Monitor (PVDD_UV)
        4. 7.4.7.4 PVDD Supply Overvoltage Monitor (PVDD_OV)
        5. 7.4.7.5 VCP Charge Pump Undervoltage Lockout (VCP_UV)
        6. 7.4.7.6 Thermal Clusters
        7. 7.4.7.7 Watchdog Timer
        8. 7.4.7.8 Fault Detection and Response Summary Table
    5. 7.5 Programming
      1. 7.5.1 SPI Interface
      2. 7.5.2 SPI Format
      3. 7.5.3 Timing Diagrams
  9. DRV8000-Q1 Register Map
  10. DRV8000-Q1_STATUS Registers
  11. 10DRV8000-Q1_CNFG Registers
  12. 11DRV8000-Q1_CTRL Registers
  13. 12Application and Implementation
    1. 12.1 Application Information
    2. 12.2 Typical Application
      1. 12.2.1 Design Requirements
    3. 12.3 Initialization Setup
    4. 12.4 Power Supply Recommendations
      1. 12.4.1 Bulk Capacitance Sizing
    5. 12.5 Layout
      1. 12.5.1 Layout Guidelines
      2. 12.5.2 Layout Example
  14. 13Device and Documentation Support
    1. 13.1 Receiving Notification of Documentation Updates
    2. 13.2 Support Resources
    3. 13.3 Trademarks
    4. 13.4 Electrostatic Discharge Caution
    5. 13.5 Glossary
  15. 14Revision History
  16. 15Mechanical, Packaging, and Orderable Information
    1. 15.1 Package Option Addendum
    2. 15.2 Tape and Reel Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Half-bridge Control

The half-bridge drivers can be controlled in two modes to support control schemes with either PWM input pins or SPI register control. The half-bridge drivers also have configuration registers (HB_OUT_CNFG1 and HB_OUT_CNFG2) to enable half-bridge control and to set up control mode (PWM or SPI).

The half-bridges can be configured for control by input signal from either PWM1 or IPROPI/PWM2 pins. The signal to PWM1 pin can be multiplexed internally to half-bridges, high-side drivers, and heater driver. IPROPI/PWM control from PWM2 pin is only available for half-bridges. When IPROPI/PWM2 pin is configured for PWM input, IPROPI sense output becomes unavailable.

IPROPI/PWM2 is sense output by default. The configuration table is shown below. Note that OUT5 and OUT6 are configured in HB_OUT_CNFG2 and OUT1 through OUT4 are configured in HB_OUT_CNFG1:

Table 7-27 OUTX_CNFG Half-bridge Configuration
OUTX_CNFG[2] OUTX_CNFG[1] OUTX_CNFG[0] OUTx HS ON LS ON
0 0 0 OFF OFF OFF
0 0 1 SPI Register Control OUTX_CTRL OUTX_CTRL
0 1 0 PWM 1 Complementary Control ~PWM1 PWM1
0 1 1 PWM 1 LS Control OFF PWM1
1 0 0 PWM 1 HS Control PWM1 OFF
1 0 1 PWM 2 Complementary Control ~IPROPI/PWM2 IPROPI/PWM2
1 1 0 PWM 2 LS Control OFF IPROPI/PWM2
1 1 1 PWM 2 HS Control IPROPI/PWM2 OFF

When the half-bridges are configured for SPI register control (OUTx_CNFG = 01b), the half-bridges high- and low-side MOSFETs can be individually controlled in register GD_HB_CTRL with bits OUTx_CTRL. The control truth table for the half-bridge outputs is shown below:

Table 7-28 Half-bridge Driver Controls
OUTx_CTRL (OUT1-6) bits Configuration Description
00 OFF Half-bridge control OFF
01 HS ON High-side MOSFET ON
10 LS ON Low-side MOSFET ON
11 RSVD Reserved.

The half-bridge control mode can be changed anytime SPI communication is available by writing to the bits. This change is immediately reflected.

When the half-bridges are configured for PWM operation (OUTx_CNFG = 01Xb or 10Xb), the inputs can accept static or pulse-width modulated (PWM) voltage signals for either 100% or PWM drive modes. The default behavior for half-bridges during off-state of PWM signal is to Hi-Z the output.

The device automatically generates the dead-time needed during transitioning between the high-side and low-side FET on the switching half-bridge. This timing is based on internal FET gate-source voltage voltage. No external timing is required. This scheme ensures minimum dead time, while guaranteeing no shoot-through current.