SLVSG25A January   2023  – March 2024 DRV8144-Q1

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Device Comparison
  6. Pin Configuration and Functions
    1. 5.1 HW Variant
      1. 5.1.1 VQFN-HR (16) package
    2. 5.2 SPI Variant
      1. 5.2.1 VQFN-HR (16) package
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
      1. 6.5.1  Power Supply & Initialization
      2. 6.5.2  Logic I/Os
      3. 6.5.3  SPI I/Os
      4. 6.5.4  Configuration Pins - HW Variant Only
      5. 6.5.5  Power FET Parameters
      6. 6.5.6  Switching Parameters with High-Side Recirculation
      7. 6.5.7  Switching Parameters with Low-Side Recirculation
      8. 6.5.8  IPROPI & ITRIP Regulation
      9. 6.5.9  Over Current Protection (OCP)
      10. 6.5.10 Over Temperature Protection (TSD)
      11. 6.5.11 Voltage Monitoring
      12. 6.5.12 Load Monitoring
      13. 6.5.13 Fault Retry Setting
      14. 6.5.14 Transient Thermal Impedance & Current Capability
    6. 6.6 SPI Timing Requirements
    7. 6.7 Switching Waveforms
      1. 6.7.1 Output switching transients
        1. 6.7.1.1 High-Side Recirculation
        2. 6.7.1.2 Low-Side Recirculation
      2. 6.7.2 Wake-up Transients
        1. 6.7.2.1 HW Variant
        2. 6.7.2.2 SPI Variant
      3. 6.7.3 Fault Reaction Transients
        1. 6.7.3.1 Retry setting
        2. 6.7.3.2 Latch setting
    8. 6.8 Typical Characteristics
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
      1. 7.2.1 HW Variant
      2. 7.2.2 SPI Variant
    3. 7.3 Feature Description
      1. 7.3.1 External Components
        1. 7.3.1.1 HW Variant
        2. 7.3.1.2 SPI Variant
      2. 7.3.2 Bridge Control
        1. 7.3.2.1 Register - Pin Control - SPI Variant Only
      3. 7.3.3 Device Configuration
        1. 7.3.3.1 Slew Rate (SR)
        2. 7.3.3.2 IPROPI
        3. 7.3.3.3 ITRIP Regulation
        4. 7.3.3.4 DIAG
          1. 7.3.3.4.1 HW variant
          2. 7.3.3.4.2 SPI variant
      4. 7.3.4 Protection and Diagnostics
        1. 7.3.4.1 Over Current Protection (OCP)
        2. 7.3.4.2 Over Temperature Protection (TSD)
        3. 7.3.4.3 Off-State Diagnostics (OLP)
        4. 7.3.4.4 On-State Diagnostics (OLA) - SPI Variant Only
        5. 7.3.4.5 VM Over Voltage Monitor
        6. 7.3.4.6 VM Under Voltage Monitor
        7. 7.3.4.7 Charge pump under voltage monitor
        8. 7.3.4.8 Power On Reset (POR)
        9. 7.3.4.9 Event Priority
    4. 7.4 Programming - SPI Variant Only
      1. 7.4.1 SPI Interface
      2. 7.4.2 Standard Frame
      3. 7.4.3 SPI Interface for Multiple Peripherals
        1. 7.4.3.1 Daisy Chain Frame for Multiple Peripherals
  9. Register Map - SPI Variant Only
    1. 8.1 User Registers
  10. Application and Implementation
    1. 9.1 Application Information
      1. 9.1.1 Load Summary
    2. 9.2 Typical Application
      1. 9.2.1 HW Variant
      2. 9.2.2 SPI Variant
    3. 9.3 Power Supply Recommendations
      1. 9.3.1 Bulk Capacitance Sizing
    4. 9.4 Layout
      1. 9.4.1 Layout Guidelines
      2. 9.4.2 Layout Example
  11. 10Device and Documentation Support
    1. 10.1 Documentation Support
      1. 10.1.1 Related Documentation
    2. 10.2 Receiving Notification of Documentation Updates
    3. 10.3 Community Resources
    4. 10.4 Trademarks
  12. 11Revision History
  13. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

ITRIP Regulation

The device offers an optional internal load current regulation feature using fixed TOFF time method. This is done by comparing the voltage on the IPROPI pin against a reference voltage determined by ITRIP setting. TOFF time is fixed at 30µsec for HW variant, while it is configurable between or 20 to 50µsec for the SPI variant using TOFF_SEL bits in the CONFIG3 register.

The ITRIP regulation, when enabled, comes into action only when the HS FET is enabled and current sensing is possible. In this scenario, when the voltage on the IPROPI pin exceeds the reference voltage set by the ITRIP setting, the internal current regulation loop forces the following action:

  • OUT = L for a fixed TOFF time
Note: The user inputs always takes precedence over the internal control. That means that if the inputs change during the TOFF time, the remainder of the TOFF time is ignored and the outputs will follow the inputs as commanded.

GUID-20201008-CA0I-MHLJ-20NP-HJF4G43WBV9N-low.svg Figure 7-3 ITRIP Implementation

Current limit is set by the following equation:

Equation 2. ITRIP regulation level = (VITRIP / RIPROPI) X AIPROPI

GUID-20200916-CA0I-NMPC-JSGT-3T5ZJJ6PKJRH-low.svg Figure 7-4 Fixed TOFF ITRIP Current Regulation

The ITRIP comparator output (ITRIP_CMP) is ignored during output slewing to avoid false triggering of the comparator output due to current spikes from the load capacitance. Additionally, in the event of transition from low-side recirculation, an additional blanking time tBLANK is needed for the sense loop to stabilize before the ITRIP comparator output is valid.

ITRIP is a 6-level setting for the HW variant. The SPI variant offers two more settings. This is summarized in the table below:

Table 7-5 ITRIP Table
ITRIP Pin S_ITRIP Register Bits VITRIP [V]
RLVL1OF6 3'b000 Regulation Disabled
RLVL2OF6 3'b001 1.18
Not available 3'b010 1.41
Not available 3'b011 1.65
RLVL3OF6 3'b100 1.98
RLVL4OF6 3'b101 2.31
RLVL5OF6 3'b110 2.64
RLVL6OF6 3'b111 2.97

In the HW variant of the device, the ITRIP pin changes are transparent and changes are reflected immediately.

In the SPI variant of the device, the ITRIP setting can be changed at any time when SPI communication is available by writing to the S_ITRIP bits. This change is immediately reflected in the device behavior.

SPI variant only - If the ITRIP regulation levels are reached, the ITRIP_CMP bit in the STATUS1 register is set. There is no nFAULT pin indication. This bit can be cleared with a CLR_FLT command.

Note: If the application requires a linear ITRIP control with multiple steps beyond the choices provided by the device, an external DAC can be used to force the voltage on the bottom side of the IPROPI resistor, instead of terminating it to GND. With this modification, the ITRIP current can be controlled by the external DAC setting as follows:
Equation 3. ITRIP regulation level = [(VITRIP - VDAC) / RIPROPI] X AIPROPI