SLVSGV9 august   2023 DRV8213

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Revision History
  6. Device Comparison
  7. Pin Configuration and Functions
  8. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Timing Diagrams
    7. 7.7 Typical Operating Characteristics
  9. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 External Components
    4. 8.4 Feature Description
      1. 8.4.1 Bridge Control
      2. 8.4.2 Current Sense and Regulation (IPROPI)
        1. 8.4.2.1 Current Sensing and Current Mirror Gain Selection
        2. 8.4.2.2 Current Regulation
      3. 8.4.3 Hardware Stall Detection
      4. 8.4.4 Protection Circuits
        1. 8.4.4.1 Overcurrent Protection (OCP)
        2. 8.4.4.2 Thermal Shutdown (TSD)
        3. 8.4.4.3 VM Undervoltage Lockout (UVLO)
    5. 8.5 Device Functional Modes
      1. 8.5.1 Active Mode
      2. 8.5.2 Low-Power Sleep Mode
      3. 8.5.3 Fault Mode
    6. 8.6 Pin Diagrams
      1. 8.6.1 Logic-Level Inputs
      2. 8.6.2 Tri-Level Input
  10. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Brushed DC Motor
        1. 9.2.1.1 Design Requirements
        2. 9.2.1.2 Detailed Design Procedure
          1. 9.2.1.2.1 Motor Voltage
          2. 9.2.1.2.2 Motor Current
        3. 9.2.1.3 Stall Detection
          1. 9.2.1.3.1 Detailed Design Procedure
            1. 9.2.1.3.1.1 Hardware Stall Detection Application Description
              1. 9.2.1.3.1.1.1 Hardware Stall Detection Timing
              2. 9.2.1.3.1.1.2 Hardware Stall Threshold Selection
            2. 9.2.1.3.1.2 Software Stall Detection Application Description
              1. 9.2.1.3.1.2.1 Software Stall Detection Timing
              2. 9.2.1.3.1.2.2 Software Stall Threshold Selection
        4. 9.2.1.4 Application Curves
        5. 9.2.1.5 Thermal Performance
          1. 9.2.1.5.1 Steady-State Thermal Performance
          2. 9.2.1.5.2 Transient Thermal Performance
  11. 10Power Supply Recommendations
    1. 10.1 Bulk Capacitance
  12. 11Layout
    1. 11.1 Layout Guidelines
  13. 12Device and Documentation Support
    1. 12.1 Documentation Support
      1. 12.1.1 Related Documentation
    2. 12.2 Receiving Notification of Documentation Updates
    3. 12.3 Community Resources
    4. 12.4 Trademarks
  14. 13Mechanical, Packaging, and Orderable Information
    1. 13.1 Tape and Reel Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information
Steady-State Thermal Performance

"Steady-state" conditions assume that the motor driver operates with a constant RMS current over a long period of time. The figures in this section show how RθJA and ΨJB (junction-to-board characterization parameter) change depending on copper area, copper thickness, and number of layers of the PCB. More copper area, more layers, and thicker copper planes decrease RθJA and ΨJB, which indicate better thermal performance from the PCB layout.

GUID-20230530-SS0I-MDBL-8VKV-ZR41CQPGL9XH-low.svg Figure 9-12 WSON, PCB junction-to-ambient thermal resistance vs copper area
GUID-20230530-SS0I-G4HD-HRT6-M5DGDHM3WXXJ-low.svgFigure 9-13 WSON, junction-to-board characterization parameter vs copper area
GUID-20230530-SS0I-2TN0-VM5M-56GRXWF9GGXS-low.svgFigure 9-14 WQFN, PCB junction-to-ambient thermal resistance vs copper area
GUID-20230530-SS0I-0NCX-J6MG-SL48VQGXF3S3-low.svgFigure 9-15 WQFN, junction-to-board characterization parameter vs copper area