SLVSGY7A November   2023  – March 2024 DRV8242-Q1

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Device Comparison
  6. Pin Configuration and Functions
    1. 5.1 HW Variant
      1. 5.1.1 VQFN (20) package
    2. 5.2 SPI Variant
      1. 5.2.1 VQFN (20) package
      2. 5.2.2 VQFN (20) package
  7. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  Recommended Operating Conditions
    4. 6.4  Thermal Information VQFN-RHL package
    5. 6.5  Electrical Characteristics
    6. 6.6  Transient Thermal Impedance & Current Capability
    7. 6.7  SPI Timing Requirements
    8. 6.8  Switching Waveforms
      1. 6.8.1 Output switching transients
        1. 6.8.1.1 High-Side Recirculation
    9. 6.9  Wake-up Transients
      1. 6.9.1 HW Variant
      2. 6.9.2 SPI Variant
    10. 6.10 Fault Reaction Transients
      1. 6.10.1 Retry setting
      2. 6.10.2 Latch setting
    11. 6.11 Typical Characteristics
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
      1. 7.2.1 HW Variant
      2. 7.2.2 SPI Variant
    3. 7.3 Feature Description
      1. 7.3.1 External Components
        1. 7.3.1.1 HW Variant
        2. 7.3.1.2 SPI Variant
      2. 7.3.2 Bridge Control
        1. 7.3.2.1 PH/EN mode
        2. 7.3.2.2 PWM mode
        3. 7.3.2.3 Register - Pin Control - SPI Variant Only
      3. 7.3.3 Device Configuration
        1. 7.3.3.1 Slew Rate (SR)
        2. 7.3.3.2 IPROPI
        3. 7.3.3.3 ITRIP Regulation
        4. 7.3.3.4 DIAG
          1. 7.3.3.4.1 HW variant
          2. 7.3.3.4.2 SPI variant
      4. 7.3.4 Protection and Diagnostics
        1. 7.3.4.1 Over Current Protection (OCP)
        2. 7.3.4.2 Over Temperature Protection (TSD)
        3. 7.3.4.3 Off-State Diagnostics (OLP)
        4. 7.3.4.4 On-State Diagnostics (OLA) - SPI Variant Only
        5. 7.3.4.5 VM Over Voltage Monitor
        6. 7.3.4.6 VM Under Voltage Monitor
        7. 7.3.4.7 Power On Reset (POR)
        8. 7.3.4.8 Event Priority
    4. 7.4 Device Functional States
      1. 7.4.1 SLEEP State
      2. 7.4.2 STANDBY State
      3. 7.4.3 Wake-up to STANDBY State
      4. 7.4.4 ACTIVE State
      5. 7.4.5 nSLEEP Reset Pulse (HW Variant, LATCHED setting Only)
    5. 7.5 Programming - SPI Variant Only
      1. 7.5.1 SPI Interface
      2. 7.5.2 Standard Frame
      3. 7.5.3 SPI Interface for Multiple Peripherals
        1. 7.5.3.1 Daisy Chain Frame for Multiple Peripherals
  9. Register Map - SPI Variant Only
    1. 8.1 User Registers
  10. Application and Implementation
    1. 9.1 Application Information
      1. 9.1.1 Load Summary
    2. 9.2 Typical Application
      1. 9.2.1 HW Variant
      2. 9.2.2 SPI Variant
    3. 9.3 Power Supply Recommendations
      1. 9.3.1 Bulk Capacitance Sizing
    4. 9.4 Layout
      1. 9.4.1 Layout Guidelines
      2. 9.4.2 Layout Example
  11. 10Device and Documentation Support
    1. 10.1 Documentation Support
      1. 10.1.1 Related Documentation
    2. 10.2 Receiving Notification of Documentation Updates
    3. 10.3 Community Resources
    4. 10.4 Trademarks
  12. 11Revision History
  13. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Bulk Capacitance Sizing

Bulk capacitance sizing is an important factor in motor drive system design. It is beneficial to have more bulk capacitance, while the disadvantages are increased cost and physical size.

The amount of local capacitance needed depends on a variety of factors including:

  • The highest current required by the motor system.
  • The capacitance of the power supply and the ability of the power supply to source current.
  • The amount of parasitic inductance between the power supply and motor system.
  • The acceptable voltage ripple.
  • The type of motor used (brushed DC, brushless DC, and stepper).
  • The motor braking method.

The inductance between the power supply and motor drive system limits the rate that current can change from the power supply. If the local bulk capacitance is too small, the system responds to excessive current demands or dumps from the motor with a change in voltage. When sufficient bulk capacitance is used, the motor voltage remains stable, and high current can be quickly supplied.

The data sheet provides a recommended value, but system-level testing is required to determine the appropriate sized bulk capacitor.

GUID-5BDD0F92-7916-43F8-9470-2D6CD9D4C052-low.gifFigure 9-5 Example Setup of Motor Drive System With External Power Supply

The voltage rating for bulk capacitors should be higher than the operating voltage to provide a margin for cases when the motor transfers energy to the supply.