SLVSHB2 February   2024 DRV8262-Q1

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
      1. 5.4.1 Transient Thermal Impedance & Current Capability
    5. 5.5 Electrical Characteristics
    6. 5.6 Typical Characteristics
  7. Detailed Description
    1. 6.1  Overview
    2. 6.2  Functional Block Diagram
    3. 6.3  Feature Description
    4. 6.4  Device Operational Modes
      1. 6.4.1 Dual H-Bridge Mode (MODE1 = 0)
      2. 6.4.2 Single H-Bridge Mode (MODE1 = 1)
    5. 6.5  Current Sensing and Regulation
      1. 6.5.1 Current Sensing and Feedback
      2. 6.5.2 Current Regulation
        1. 6.5.2.1 Mixed Decay
        2. 6.5.2.2 Smart tune Dynamic Decay
      3. 6.5.3 Current Sensing with External Resistor
    6. 6.6  Charge Pump
    7. 6.7  Linear Voltage Regulator
    8. 6.8  VCC Voltage Supply
    9. 6.9  Logic Level, Tri-Level and Quad-Level Pin Diagrams
    10. 6.10 Protection Circuits
      1. 6.10.1 VM Undervoltage Lockout (UVLO)
      2. 6.10.2 VCP Undervoltage Lockout (CPUV)
      3. 6.10.3 Logic Supply Power on Reset (POR)
      4. 6.10.4 Overcurrent Protection (OCP)
      5. 6.10.5 Thermal Shutdown (OTSD)
      6. 6.10.6 nFAULT Output
      7. 6.10.7 Fault Condition Summary
    11. 6.11 Device Functional Modes
      1. 6.11.1 Sleep Mode
      2. 6.11.2 Operating Mode
      3. 6.11.3 nSLEEP Reset Pulse
      4. 6.11.4 Functional Modes Summary
  8. Application and Implementation
    1. 7.1 Application Information
      1. 7.1.1 Driving Brushed-DC Motors
        1. 7.1.1.1 Brushed-DC Motor Driver Typical Application
        2. 7.1.1.2 Power Loss Calculations - Dual H-bridge
        3. 7.1.1.3 Power Loss Calculations - Single H-bridge
        4. 7.1.1.4 Junction Temperature Estimation
        5. 7.1.1.5 Application Performance Plots
      2. 7.1.2 Driving Stepper Motors
        1. 7.1.2.1 Stepper Driver Typical Application
        2. 7.1.2.2 Power Loss Calculations
        3. 7.1.2.3 Junction Temperature Estimation
      3. 7.1.3 Driving Thermoelectric Coolers (TEC)
  9. Package Thermal Considerations
    1. 8.1 DDW Package
      1. 8.1.1 Thermal Performance
        1. 8.1.1.1 Steady-State Thermal Performance
        2. 8.1.1.2 Transient Thermal Performance
    2. 8.2 PCB Material Recommendation
  10. Power Supply Recommendations
    1. 9.1 Bulk Capacitance
    2. 9.2 Power Supplies
  11. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  12. 11Device and Documentation Support
    1. 11.1 Documentation Support
      1. 11.1.1 Related Documentation
    2. 11.2 Receiving Notification of Documentation Updates
    3. 11.3 Support Resources
    4. 11.4 Trademarks
    5. 11.5 Electrostatic Discharge Caution
    6. 11.6 Glossary
  13. 12Revision History
  14. 13Mechanical, Packaging, and Orderable Information
    1. 13.1 Tape and Reel Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Transient Thermal Performance

The driver may experience different transient driving conditions that cause large currents to flow for a short duration of time. These may include -

  • Motor start-up when the rotor is initially stationary.
  • Fault conditions when there is a supply or ground short to one of the motor outputs, and the overcurrent protection triggers.
  • Briefly energizing a motor or solenoid for a limited time, then de-energizing.

For these transient cases, the duration of drive time is another factor that impacts thermal performance in addition to copper area and thickness. In transient cases, the thermal impedance parameter ZθJA denotes the junction-to-ambient thermal performance. The figures in this section show the simulated thermal impedances for 1-oz and 2-oz copper layouts for the DDW package. These graphs indicate better thermal performance with short current pulses. For short periods of drive time, the device die size and package dominates the thermal performance. For longer drive pulses, board layout has a more significant impact on thermal performance. Both graphs show the curves for thermal impedance split due to number of layers and copper area as the duration of the drive pulse duration increases. Long pulses can be considered steady-state performance.

GUID-20230308-SS0I-71NP-BJFL-B0G20MZCGXSS-low.svgFigure 8-4 DDW package junction-to-ambient thermal impedance for 1-oz copper layouts
GUID-20230308-SS0I-RXSP-S4PV-GCKKQQQTNCJ0-low.svgFigure 8-5 DDW package junction-to-ambient thermal impedance for 2-oz copper layouts