SLVSFO2 July   2020  – MONTH  DRV8353M

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Device Comparison Table
  6. Pin Configuration and Functions
    1.     Pin Functions—40-Pin DRV8353M Devices
  7. Absolute Maximum Ratings
  8. ESD Ratings
  9. Recommended Operating Conditions
  10. 10Thermal Information
  11. 11Electrical Characteristics
  12. 12SPI Timing Requirements
  13. 13Detailed Description
    1. 13.1 Overview
    2. 13.2 Functional Block Diagram
    3. 13.3 Feature Description
      1. 13.3.1 Three Phase Smart Gate Drivers
        1. 13.3.1.1 PWM Control Modes
          1. 13.3.1.1.1 6x PWM Mode (PWM_MODE = 00b or MODE Pin Tied to AGND)
          2. 13.3.1.1.2 3x PWM Mode (PWM_MODE = 01b or MODE Pin = 47 kΩ to AGND)
          3. 13.3.1.1.3 1x PWM Mode (PWM_MODE = 10b or MODE Pin = Hi-Z)
          4. 13.3.1.1.4 Independent PWM Mode (PWM_MODE = 11b or MODE Pin Tied to DVDD)
        2. 13.3.1.2 Device Interface Modes
          1. 13.3.1.2.1 Serial Peripheral Interface (SPI)
          2. 13.3.1.2.2 Hardware Interface
        3. 13.3.1.3 Gate Driver Voltage Supplies and Input Supply Configurations
        4. 13.3.1.4 Smart Gate Drive Architecture
          1. 13.3.1.4.1 IDRIVE: MOSFET Slew-Rate Control
          2. 13.3.1.4.2 TDRIVE: MOSFET Gate Drive Control
          3. 13.3.1.4.3 Propagation Delay
          4. 13.3.1.4.4 MOSFET VDS Monitors
          5. 13.3.1.4.5 VDRAIN Sense and Reference Pin
      2. 13.3.2 DVDD Linear Voltage Regulator
      3. 13.3.3 Pin Diagrams
      4. 13.3.4 Low-Side Current-Shunt Amplifiers
        1. 13.3.4.1 Bidirectional Current Sense Operation
        2. 13.3.4.2 Unidirectional Current Sense Operation (SPI only)
        3. 13.3.4.3 Amplifier Calibration Modes
        4. 13.3.4.4 MOSFET VDS Sense Mode (SPI Only)
      5. 13.3.5 Gate Driver Protective Circuits
        1. 13.3.5.1 VM Supply and VDRAIN Undervoltage Lockout (UVLO)
        2. 13.3.5.2 VCP Charge-Pump and VGLS Regulator Undervoltage Lockout (GDUV)
        3. 13.3.5.3 MOSFET VDS Overcurrent Protection (VDS_OCP)
          1. 13.3.5.3.1 VDS Latched Shutdown (OCP_MODE = 00b)
          2. 13.3.5.3.2 VDS Automatic Retry (OCP_MODE = 01b)
          3. 13.3.5.3.3 VDS Report Only (OCP_MODE = 10b)
          4. 13.3.5.3.4 VDS Disabled (OCP_MODE = 11b)
        4. 13.3.5.4 VSENSE Overcurrent Protection (SEN_OCP)
          1. 13.3.5.4.1 VSENSE Latched Shutdown (OCP_MODE = 00b)
          2. 13.3.5.4.2 VSENSE Automatic Retry (OCP_MODE = 01b)
          3. 13.3.5.4.3 VSENSE Report Only (OCP_MODE = 10b)
          4. 13.3.5.4.4 VSENSE Disabled (OCP_MODE = 11b or DIS_SEN = 1b)
        5. 13.3.5.5 Gate Driver Fault (GDF)
        6. 13.3.5.6 Overcurrent Soft Shutdown (OCP Soft)
        7. 13.3.5.7 Thermal Warning (OTW)
        8. 13.3.5.8 Thermal Shutdown (OTSD)
        9. 13.3.5.9 Fault Response Table
    4. 13.4 Device Functional Modes
      1. 13.4.1 Gate Driver Functional Modes
        1. 13.4.1.1 Sleep Mode
        2. 13.4.1.2 Operating Mode
        3. 13.4.1.3 Fault Reset (CLR_FLT or ENABLE Reset Pulse)
    5. 13.5 Programming
      1. 13.5.1 SPI Communication
        1. 13.5.1.1 SPI
          1. 13.5.1.1.1 SPI Format
    6. 13.6 Register Maps
      1. 13.6.1 Status Registers
        1. 13.6.1.1 Fault Status Register 1 (address = 0x00h)
        2. 13.6.1.2 Fault Status Register 2 (address = 0x01h)
      2. 13.6.2 Control Registers
        1. 13.6.2.1 Driver Control Register (address = 0x02h)
        2. 13.6.2.2 Gate Drive HS Register (address = 0x03h)
        3. 13.6.2.3 Gate Drive LS Register (address = 0x04h)
        4. 13.6.2.4 OCP Control Register (address = 0x05h)
        5. 13.6.2.5 CSA Control Register (address = 0x06h)
        6. 13.6.2.6 Driver Configuration Register (address = 0x07h)
  14. 14Application and Implementation
    1. 14.1 Application Information
    2. 14.2 Typical Application
      1. 14.2.1 Primary Application
        1. 14.2.1.1 Design Requirements
        2. 14.2.1.2 Detailed Design Procedure
          1. 14.2.1.2.1 External MOSFET Support
            1. 14.2.1.2.1.1 MOSFET Example
          2. 14.2.1.2.2 IDRIVE Configuration
            1. 14.2.1.2.2.1 IDRIVE Example
          3. 14.2.1.2.3 VDS Overcurrent Monitor Configuration
            1. 14.2.1.2.3.1 VDS Overcurrent Example
          4. 14.2.1.2.4 Sense-Amplifier Bidirectional Configuration
            1. 14.2.1.2.4.1 Sense-Amplifier Example
          5. 14.2.1.2.5 Single Supply Power Dissipation
          6. 14.2.1.2.6 Single Supply Power Dissipation Example
        3. 14.2.1.3 Application Curves
  15. 15Power Supply Recommendations
    1. 15.1 Bulk Capacitance Sizing
  16. 16Layout
    1. 16.1 Layout Guidelines
    2. 16.2 Layout Example
  17. 17Device and Documentation Support
    1. 17.1 Device Support
      1. 17.1.1 Device Nomenclature
    2. 17.2 Documentation Support
      1. 17.2.1 Related Documentation
    3. 17.3 Receiving Notification of Documentation Updates
    4. 17.4 Support Resources
    5. 17.5 Trademarks
    6. 17.6 Electrostatic Discharge Caution
    7. 17.7 Glossary
  18. 18Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information
Single Supply Power Dissipation Example

In this application example the device is configured for single supply operation. This configuration requires only one power supply for the DRV8353M but comes at the tradeoff of increased internal power dissipation. The junction temperature is estimated in the example below.

Use Equation 26 to calculate the value of IVCP and IVGLS for a MOSFET gate charge of 78 nC, all 3 high-side and 3 low-side MOSFETs switching, and a switching frequency of 45 kHz.

Equation 26. IVCP/VGLS = 78 nC × 3 × 45 kHz = 10.5 mA

Use Equation 27, Equation 28, Equation 29, Equation 30, and Equation 31 to calculate the value of Ptot for VVM = VVDRAIN = VVIN = 48 V, IVM = 9.5 mA, IVCP = 10.5 mA, IVGLS = 10.5 mA, VVCC = 3.3 V, IVCC = 100 mA, and η = 86 %.

Equation 27. PVCP = 10.5 mA × (48 V + 48 V) = 1 W
Equation 28. PVGLS = 10.5 mA × 48 V = 0.5 W
Equation 29. PVM = 9.5 mA × 48 V = 0.5 W
Equation 30. PBUCK = [(3.3 V × 100 mA) / 0.86] – (3.3 V × 100 mA) = 0.054 W
Equation 31. Ptot = 1 W + 0.5 W + 0.5 W + 0.054 = 2.054 W

Lastly, to estimate the device junction temperature during operation, use Equation 32 to calculate the value of TJmax for TAmax = 60°C, RθJA = 26.6°C/W for the RGZ package, and Ptot = 2.054 W. Again, please note that the RθJA is highly dependent on the PCB design used in the actual application and should be verified. For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

Equation 32. TJmax = 60°C + (26.6°C/W × 2.054 W) = 115°C

As shown in this example, the device is within its operational limits, but is operating almost to its maximum operational junction temperature. Design care should be taken in the single supply configuration to correctly manage the power dissipation of the device.