SLOSE55C May   2020  – July 2022 DRV8426

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Indexer Timing Requirements
    7. 6.7 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  Stepper Motor Driver Current Ratings
        1. 7.3.1.1 Peak Current Rating
        2. 7.3.1.2 RMS Current Rating
        3. 7.3.1.3 Full-Scale Current Rating
      2. 7.3.2  PWM Motor Drivers
      3. 7.3.3  Microstepping Indexer
      4. 7.3.4  Controlling VREF with an MCU DAC
      5. 7.3.5  Current Regulation
      6. 7.3.6  Decay Modes
        1. 7.3.6.1 Slow Decay for Increasing and Decreasing Current
        2. 7.3.6.2 Slow Decay for Increasing Current, Mixed Decay for Decreasing Current
        3. 7.3.6.3 Mixed Decay for Increasing and Decreasing Current
        4. 7.3.6.4 Smart tune Dynamic Decay
        5. 7.3.6.5 Smart tune Ripple Control
        6. 7.3.6.6 PWM OFF Time
        7. 7.3.6.7 Blanking time
      7. 7.3.7  Charge Pump
      8. 7.3.8  Linear Voltage Regulators
      9. 7.3.9  Logic Level, tri-level and quad-level Pin Diagrams
      10. 7.3.10 nFAULT Pin
      11. 7.3.11 Protection Circuits
        1. 7.3.11.1 VM Undervoltage Lockout (UVLO)
        2. 7.3.11.2 VCP Undervoltage Lockout (CPUV)
        3. 7.3.11.3 Overcurrent Protection (OCP)
          1. 7.3.11.3.1 Latched Shutdown
          2. 7.3.11.3.2 Automatic Retry
        4. 7.3.11.4 Thermal Shutdown (OTSD)
          1. 7.3.11.4.1 Latched Shutdown
          2. 7.3.11.4.2 Automatic Retry
        5. 7.3.11.5 Fault Condition Summary
    4. 7.4 Device Functional Modes
      1. 7.4.1 Sleep Mode (nSLEEP = 0)
      2. 7.4.2 Disable Mode (nSLEEP = 1, ENABLE = 0)
      3. 7.4.3 Operating Mode (nSLEEP = 1, ENABLE = Hi-Z/1)
      4. 7.4.4 nSLEEP Reset Pulse
      5. 7.4.5 Functional Modes Summary
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 Stepper Motor Speed
        2. 8.2.2.2 Current Regulation
        3. 8.2.2.3 Decay Modes
      3. 8.2.3 Application Curves
      4. 8.2.4 Thermal Application
        1. 8.2.4.1 Power Dissipation
          1. 8.2.4.1.1 Conduction Loss
          2. 8.2.4.1.2 Switching Loss
          3. 8.2.4.1.3 Power Dissipation Due to Quiescent Current
          4. 8.2.4.1.4 Total Power Dissipation
        2. 8.2.4.2 Device Junction Temperature Estimation
  9. Power Supply Recommendations
    1. 9.1 Bulk Capacitance
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Related Documentation
    2. 11.2 Receiving Notification of Documentation Updates
    3. 11.3 Community Resources
    4. 11.4 Trademarks
  12. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Bulk Capacitance

Having appropriate local bulk capacitance is an important factor in motor drive system design. It is generally beneficial to have more bulk capacitance, while the disadvantages are increased cost and physical size.

The amount of local capacitance needed depends on a variety of factors, including:

  • The highest current required by the motor system
  • The power supply’s capacitance and ability to source current
  • The amount of parasitic inductance between the power supply and motor system
  • The acceptable voltage ripple
  • The type of motor used (brushed DC, brushless DC, stepper)
  • The motor braking method

The inductance between the power supply and motor drive system will limit the rate current can change from the power supply. If the local bulk capacitance is too small, the system will respond to excessive current demands or dumps from the motor with a change in voltage. When adequate bulk capacitance is used, the motor voltage remains stable and high current can be quickly supplied.

The data sheet generally provides a recommended value, but system-level testing is required to determine the appropriate sized bulk capacitor.

The voltage rating for bulk capacitors should be higher than the operating voltage, to provide margin for cases when the motor transfers energy to the supply.

GUID-6EB2B631-1277-4E41-B203-82CDBEC7359D-low.gifFigure 9-1 Example Setup of Motor Drive System With External Power Supply