SLOSE37B June   2020  – May 2022 DRV8436

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
    1. 5.1 Pin Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Indexer Timing Requirements
    7. 6.7 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  Stepper Motor Driver Current Ratings
        1. 7.3.1.1 Peak Current Rating
        2. 7.3.1.2 rms Current Rating
        3. 7.3.1.3 Full-Scale Current Rating
      2. 7.3.2  PWM Motor Drivers
      3. 7.3.3  Microstepping Indexer
      4. 7.3.4  Controlling VREF with an MCU DAC
      5. 7.3.5  Current Regulation
      6. 7.3.6  Decay Modes
        1. 7.3.6.1 Slow Decay for Increasing and Decreasing Current
        2. 7.3.6.2 Slow Decay for Increasing Current, Mixed Decay for Decreasing Current
        3. 7.3.6.3 Mixed Decay for Increasing and Decreasing Current
        4. 7.3.6.4 Smart tune Dynamic Decay
        5. 7.3.6.5 Smart tune Ripple Control
        6. 7.3.6.6 PWM OFF Time
        7. 7.3.6.7 Blanking time
      7. 7.3.7  Charge Pump
      8. 7.3.8  Linear Voltage Regulators
      9. 7.3.9  Logic Level, tri-level and quad-level Pin Diagrams
        1. 7.3.9.1 nFAULT Pin
      10. 7.3.10 Protection Circuits
        1. 7.3.10.1 VM Undervoltage Lockout (UVLO)
        2. 7.3.10.2 VCP Undervoltage Lockout (CPUV)
        3. 7.3.10.3 Overcurrent Protection (OCP)
          1. 7.3.10.3.1 Latched Shutdown
          2. 7.3.10.3.2 Automatic Retry
        4. 7.3.10.4 Thermal Shutdown (OTSD)
        5. 7.3.10.5 Fault Condition Summary
    4. 7.4 Device Functional Modes
      1. 7.4.1 Sleep Mode (nSLEEP = 0)
      2. 7.4.2 Disable Mode (nSLEEP = 1, ENABLE = 0)
      3. 7.4.3 Operating Mode (nSLEEP = 1, ENABLE = Hi-Z/1)
      4. 7.4.4 nSLEEP Reset Pulse
      5. 7.4.5 Functional Modes Summary
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 Stepper Motor Speed
        2. 8.2.2.2 Current Regulation
        3. 8.2.2.3 Decay Modes
      3. 8.2.3 Application Curves
  9. Thermal Application
    1. 9.1 Power Dissipation
      1. 9.1.1 Conduction Loss
      2. 9.1.2 Switching Loss
      3. 9.1.3 Power Dissipation Due to Quiescent Current
      4. 9.1.4 Total Power Dissipation
    2. 9.2 Device Junction Temperature Estimation
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Examples
  11. 11Device and Documentation Support
    1. 11.1 Documentation Support
      1. 11.1.1 Related Documentation
    2. 11.2 Receiving Notification of Documentation Updates
    3. 11.3 Community Resources
    4. 11.4 Trademarks
  12. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Decay Modes

During PWM current chopping, the H-bridge is enabled to drive through the motor winding until the PWM current chopping threshold is reached. This is shown in Figure 7-7, Item 1.

Once the chopping current threshold is reached, the H-bridge can operate in two different states, fast decay or slow decay. In fast decay mode, once the PWM chopping current level has been reached, the H-bridge reverses state to allow winding current to flow in a reverse direction. Fast decay mode is shown in Figure 7-7, item 2. In slow decay mode, winding current is re-circulated by enabling both of the low-side FETs in the bridge. This is shown in Figure 7-7, Item 3.

GUID-71D73EF9-6D8C-4499-995D-EBD5038FB76C-low.gifFigure 7-7 Decay Modes

The decay mode of the DRV8436 is selected by the DECAY0 and DECAY1 pins as shown in Table 7-6. The decay modes can be changed on the fly.

Table 7-6 Decay Mode Settings
DECAY0DECAY1INCREASING STEPSDECREASING STEPS
00Smart tune Dynamic DecaySmart tune Dynamic Decay
01Smart tune Ripple ControlSmart tune Ripple Control
10Mixed decay: 30% fastMixed decay: 30% fast
11Slow decayMixed decay: 30% fast
Hi-Z0Mixed decay: 60% fastMixed decay: 60% fast
Hi-Z1Slow decaySlow decay

Figure 7-8 defines increasing and decreasing current. For the slow-mixed decay mode, the decay mode is set as slow during increasing current steps and mixed decay during decreasing current steps. In full step and noncircular 1/2-step operation, the decay mode corresponding to decreasing steps is always used.

GUID-6A1B7C8C-926F-4F3C-BE7B-8881B1A2A999-low.gifFigure 7-8 Definition of Increasing and Decreasing Steps