SLLSFA7A July   2020  – April 2021 DRV8706-Q1

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Descriptions
  4. Revision History
  5. Pin Configuration
    1.     DRV8706-Q1_RHB Package (VQFN) Pin Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Timing Requirements
    7. 6.7 Timing Diagrams
    8. 6.8 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 External Components
      2. 7.3.2 Device Interface Variants
        1. 7.3.2.1 Serial Peripheral Interface (SPI)
        2. 7.3.2.2 Hardware (H/W)
      3. 7.3.3 Input PWM Modes
        1. 7.3.3.1 Half-Bridge Control
        2. 7.3.3.2 H-Bridge Control
        3. 7.3.3.3 Split HS and LS Solenoid Control
      4. 7.3.4 Smart Gate Driver
        1. 7.3.4.1 Functional Block Diagram
        2. 7.3.4.2 Slew Rate Control (IDRIVE)
        3. 7.3.4.3 Gate Drive State Machine (TDRIVE)
      5. 7.3.5 Doubler (Single-Stage) Charge Pump
      6. 7.3.6 Wide Common Mode Differential Current Shunt Amplifier
      7. 7.3.7 Pin Diagrams
        1. 7.3.7.1 Logic Level Input Pin (DRVOFF, IN1/EN, IN2/PH, nHIZx, nSLEEP, nSCS, SCLK, SDI)
        2. 7.3.7.2 Logic Level Push Pull Output (SDO)
        3. 7.3.7.3 Logic Level Open Drain Output (nFAULT)
        4. 7.3.7.4 Quad-Level Input (GAIN)
        5. 7.3.7.5 Six-Level Input (IDRIVE, VDS)
      8. 7.3.8 Protection and Diagnostics
        1. 7.3.8.1  Gate Driver Disable and Enable (DRVOFF and EN_DRV)
        2. 7.3.8.2  Fault Reset (CLR_FLT)
        3. 7.3.8.3  DVDD Logic Supply Power on Reset (DVDD_POR)
        4. 7.3.8.4  PVDD Supply Undervoltage Monitor (PVDD_UV)
        5. 7.3.8.5  PVDD Supply Overvoltage Monitor (PVDD_OV)
        6. 7.3.8.6  VCP Charge Pump Undervoltage Lockout (VCP_UV)
        7. 7.3.8.7  MOSFET VDS Overcurrent Protection (VDS_OCP)
        8. 7.3.8.8  Gate Driver Fault (VGS_GDF)
        9. 7.3.8.9  Thermal Warning (OTW)
        10. 7.3.8.10 Thermal Shutdown (OTSD)
        11. 7.3.8.11 Offline Short Circuit and Open Load Detection (OOL and OSC)
        12. 7.3.8.12 Fault Detection and Response Summary Table
    4. 7.4 Device Function Modes
      1. 7.4.1 Inactive or Sleep State
      2. 7.4.2 Standby State
      3. 7.4.3 Operating State
    5. 7.5 Programming
      1. 7.5.1 SPI Interface
      2. 7.5.2 SPI Format
      3. 7.5.3 SPI Interface for Multiple Slaves
        1. 7.5.3.1 SPI Interface for Multiple Slaves in Daisy Chain
    6. 7.6 Register Maps
      1. 7.6.1 STATUS Registers
      2. 7.6.2 CONTROL Registers
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 Gate Driver Configuration
          1. 8.2.2.1.1 VCP Load Calculation Example
          2. 8.2.2.1.2 IDRIVE Calculation Example
        2. 8.2.2.2 Current Shunt Amplifier Configuration
        3. 8.2.2.3 Power Dissipation
      3. 8.2.3 Application Curves
  9. Layout
    1. 9.1 Layout Guidelines
    2. 9.2 Layout Example
  10. 10Device and Documentation Support
    1. 10.1 Documentation Support
      1. 10.1.1 Related Documentation
      2. 10.1.2 Receiving Notification of Documentation Updates
    2. 10.2 Support Resources
    3. 10.3 Trademarks
    4. 10.4 Electrostatic Discharge Caution
    5. 10.5 Glossary
  11. 11Mechanical, Packaging, and Orderable Information

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • RHB|32
Thermal pad, mechanical data (Package|Pins)
Orderable Information

MOSFET VDS Overcurrent Protection (VDS_OCP)

If the voltage across the VDS overcurrent comparator exceeds the VDS_LVL for longer than the tDS_DG time, the DRV8706-Q1 detects a VDS overcurrent condition. The voltage threshold and deglitch time can be adjusted through the VDS_LVL and VDS_DG register settings. Additionally, in independent half-bridge and split HS/LS PWM control (BRG_MODE = 00b, 11b) the device can be configured to disable all half-bridges or only the associated half-bridge in which the fault occurred through the VDS_IND register setting.

On SPI device variants, the VDS overcurrent monitor can respond and recover in four different modes set through the VDS_MODE register setting.

  • Latched Fault Mode: After detecting the overcurrent event, the gate driver pull downs are enabled and nFAULT pin, FAULT register bit, and associated VDS register bit asserted. After the overcurrent event is removed, the fault state remains latched until CLR_FLT is issued.
  • Cycle by Cycle Mode: After detecting the overcurrent event, the gate driver pull downs are enabled and nFAULT pin, FAULT register bit, and associated VDS register bit asserted. The next PWM input will clear the nFAULT pin and FAULT register bit and reenable the driver automatically. The associated VDS register bit will remain asserted until CLR_FLT is issued.
  • Warning Report Only Mode: The overcurrent event is reported in the WARN and associated VDS register bits. The device will not take any action. The warning remains latched until CLR_FLT is issued.
  • Disabled Mode: The VDS overcurrent monitors are disabled and will not respond or report.

On H/W device variants, the VDS overcurrent mode is fixed to cycle by cycle and tVDS_DG is fixed to 4 µs. Independent half-bridge shutdown is automatically enabled for the independent half-bridge and split HS/LS PWM control modes. Additionally, the VDS overcurrent protection can be disabled through level 6 of the VDS pin multi-level input.

When a VDS overcurrent fault occurs, the gate pull down current can be configured in order to increase or decrease the time to disable the external MOSFET. This can help to avoid a slow-turn off during high-current short circuit conditions. This setting is configure through the VDS_IDRVN register setting on SPI devices. On hardware devices, this setting is automatically matched to the programmed IDRVN current.