SLVSC40H June   2013  – May 2020 DRV8711

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
    1.     Device Images
      1.      Simplified Schematic
  4. Revision History
  5. Pin Configuration and Functions
    1.     Pin Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 SPI Timing Requirements
    7. 6.7 Indexer Timing Requirements
    8. 6.8 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  PWM Motor Drivers
      2. 7.3.2  Direct PWM Input Mode
      3. 7.3.3  Microstepping Indexer
      4. 7.3.4  Current Regulation
      5. 7.3.5  Decay Modes
      6. 7.3.6  Blanking Time
      7. 7.3.7  Predrivers
      8. 7.3.8  Configuring Predrivers
      9. 7.3.9  External FET Selection
      10. 7.3.10 Stall Detection
        1. 7.3.10.1 Internal Stall Detection
        2. 7.3.10.2 External Stall Detection
      11. 7.3.11 Protection Circuits
        1. 7.3.11.1 Overcurrent Protection (OCP)
        2. 7.3.11.2 Predriver Fault
        3. 7.3.11.3 Thermal Shutdown (TSD)
        4. 7.3.11.4 Undervoltage Lockout (UVLO)
    4. 7.4 Device Functional Modes
      1. 7.4.1 RESET and SLEEPn Operation
      2. 7.4.2 Microstepping Drive Current
    5. 7.5 Programming
      1. 7.5.1 Serial Data Format
    6. 7.6 Register Maps
      1. 7.6.1 Control Registers
      2. 7.6.2 CTRL Register (Address = 0x00)
      3. 7.6.3 TORQUE Register (Address = 0x01)
      4. 7.6.4 OFF Register (Address = 0x02)
      5. 7.6.5 BLANK Register (Address = 0x03)
      6. 7.6.6 DECAY Register (Address = 0x04)
      7. 7.6.7 STALL Register (Address = 0x05)
      8. 7.6.8 DRIVE Register (Address = 0x06)
      9. 7.6.9 STATUS Register (Address = 0x07)
  8. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1 Sense Resistor
      2. 8.1.2 Optional Series Gate Resistor
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 Set Step Rate
        2. 8.2.2.2 Calculate Current Regulation
        3. 8.2.2.3 Support External FETs
        4. 8.2.2.4 Pick Decay Mode
        5. 8.2.2.5 Config Stall Detection
        6. 8.2.2.6 Application Curves
  9. Power Supply Recommendations
    1. 9.1 Bulk Capacitance
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Documentation Support
      1. 11.1.1 Related Documentation
    2. 11.2 Receiving Notification of Documentation Updates
    3. 11.3 Community Resources
    4. 11.4 Trademarks
    5. 11.5 Electrostatic Discharge Caution
    6. 11.6 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

RESET and SLEEPn Operation

An internal power-up reset circuit monitors the voltage applied to the VM pin. If VM falls below the VM undervoltage lockout voltage, the part is reset, as described below for the case of asserting the RESET pin.

If the RESET pin is asserted, all internal logic including the indexer is reset. All registers are returned to their initial default conditions. The power stage will be disabled, and all inputs, including STEP and the serial interface, are ignored when RESET is active.

On exiting reset state, some time (approximately 1 mS) needs to pass before the part is fully functional.

Applying an active low input to the SLEEPn input pin will place the device into a low power state. In sleep mode, the motor driver circuitry is disabled, the gate drive regulator and charge pump are disabled, and all analog circuitry is placed into a low power state. The digital circuitry in the device still operates, so the device registers can still be accessed via the serial interface.

When SLEEPn is active, the RESET pin does not function. SLEEPn must be exited before RESET will take effect. SLEEPn must also be exited to clear the UVLO bit in the status register.

When exiting from sleep mode, some time (approximately 1 mS) needs to pass before applying a STEP input, to allow the internal circuitry to stabilize.