SLVSBW9C April   2013  – December 2015 DRV8832-Q1

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
    1.     Device Images
      1.      Simplified Schematic
  4. Revision History
  5. Pin Configuration and Functions
    1.     Pin Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 PWM Motor Driver
      2. 7.3.2 Bridge Control
      3. 7.3.3 Voltage Regulation
      4. 7.3.4 Reference Output
      5. 7.3.5 Current Limit
      6. 7.3.6 Protection Circuits
        1. 7.3.6.1 Overcurrent Protection (OCP)
        2. 7.3.6.2 Thermal Shutdown (TSD)
        3. 7.3.6.3 Undervoltage Lockout (UVLO)
    4. 7.4 Device Functional Modes
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 Motor Voltage
        2. 8.2.2.2 Motor Current Trip Point
        3. 8.2.2.3 Sense Resistor Selection
        4. 8.2.2.4 Low Power Operation
      3. 8.2.3 Application Curves
  9. Power Supply Recommendations
    1. 9.1 Power Supervisor
    2. 9.2 Bulk Capacitance
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
    3. 10.3 Thermal Considerations
      1. 10.3.1 Power Dissipation
      2. 10.3.2 Heatsinking
  11. 11Device and Documentation Support
    1. 11.1 Documentation Support
      1. 11.1.1 Related Documentation
    2. 11.2 Community Resources
    3. 11.3 Trademarks
    4. 11.4 Electrostatic Discharge Caution
    5. 11.5 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • DGQ|10
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Application Curves

The following scope captures show how the output duty cycle changes to as VCC increases. This allows the motor to spin at a constant speed as VCC changes. At VCC = 3.9 V, the output duty cycle is 100% on. As the VCC voltage increases to greater than 4 V, the output duty cycle begins to decrease. The output duty cycle is shown at VCC = 4.5 V, VCC = 5 V and VCC = 5.5 V.

  • Channel 1 – OUT1: IN1 – Logic Low
  • Channel 2 – OUT2: IN2 – Logic High
  • Channel 4 – Motor current: VSET – 1 V
  • Motor used: NMB Technologies Corporation, PPN7PA12C1
DRV8832-Q1 DRV8832_3p9VCC.gifFigure 10. Output Pulse Width Modulating at VCC = 3.9 V
DRV8832-Q1 DRV8832_4p5VCC.gifFigure 12. Output Pulse Width Modulating at VCC = 4.5 V
DRV8832-Q1 DRV8832_5p5VCC.gifFigure 14. Output Pulse Width Modulating at VCC = 5.5 V
DRV8832-Q1 DRV8832_4p0VCC.gifFigure 11. Output Pulse Width Modulating at VCC = 4 V
DRV8832-Q1 DRV8832_5p0VCC.gifFigure 13. Output Pulse Width Modulating at VCC = 5 V