SLVSCP9 August   2014 DRV8833C

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 Handling Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 PWM Motor Drivers
      2. 7.3.2 Bridge Control and Decay Modes
      3. 7.3.3 Current Control
      4. 7.3.4 Decay Mode
      5. 7.3.5 Slow Decay
      6. 7.3.6 Sleep Mode
      7. 7.3.7 Parallel Mode
      8. 7.3.8 Protection Circuits
        1. 7.3.8.1 Overcurrent Protection (OCP)
        2. 7.3.8.2 Thermal Shutdown (TSD)
        3. 7.3.8.3 UVLO
    4. 7.4 Device Functional Modes
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 Stepper Motor Speed
        2. 8.2.2.2 Current Regulation
      3. 8.2.3 Application Curve
  9. Power Supply Recommendations
    1. 9.1 Sizing Bulk Capacitance for Motor Drive Systems
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Trademarks
    2. 11.2 Electrostatic Discharge Caution
    3. 11.3 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

9 Power Supply Recommendations

The DRV8833C is designed to operate from an input voltage supply (VM) range between 2.7 to 10.8 V. A 10-µF ceramic capacitor rated for VM must be placed as close to the DRV8833C as possible.

9.1 Sizing Bulk Capacitance for Motor Drive Systems

Bulk capacitance sizing is an important factor in motor drive system design. It depends on a variety of factors including:

  • Type of power supply
  • Acceptable supply voltage ripple
  • Parasitic inductance in the power supply wiring
  • Type of motor (brushed DC, brushless DC, stepper)
  • Motor startup current
  • Motor braking method

The inductance between the power supply and motor drive system limits the rate current can change from the power supply. If the local bulk capacitance is too small, the system responds to excessive current demands or dumps from the motor with a change in voltage. Size the bulk capacitance to meet acceptable voltage ripple levels.

The data sheet generally provides a recommended value, but system-level testing is required to determine the appropriate-sized bulk capacitor.

bulk_cap_LVSCP9.gifFigure 13. Setup of Motor Drive System With External Power Supply