SLVSDO1C January 2017 – March 2020 DRV8886AT
PRODUCTION DATA.
As described in the previous analysis, it is possible to obtain a tighter error calculations by using values for VRREF and ARREF for the specific application use case. The data sheet parameters represent limits based on design and characterization data across a wide range of temperatures and voltage with additional margin. For the following example, the operational voltage is limited to VVM = 24 V, a common operating point for the DRV8884, DRV8885, DRV8886, and DRV8886AT.
Considering this use case, Table 14 provides updated values for VRREF and ARREF.
Parameter | Minimum | Typical | Maximum |
---|---|---|---|
ARREF | 28800 | 30000 | 31200 |
VRREF | 1.207 | 1.232 | 1.257 |
RREF | 19800 | 20000 | 20200 |
Using values above and maintaining VDAC constant, the error percentage is reduced as shown in the following tables.
Parameter | Minimum | Typical | Maximum |
---|---|---|---|
VDAC | 0.4107 | 0.4107 | 0.4107 |
ARREF | 28800 | 30000 | 31200 |
VRREF | 1.207 | 1.232 | 1.257 |
RREF | 19800 | 20000 | 20200 |
IFS (mA) | 940.79 | 1000 | 1060.8 |
Error (%) | –5.93 | 6.07 |
Parameter | Minimum | Typical | Maximum |
---|---|---|---|
VDAC | 0.9035 | 0.9035 | 0.9035 |
ARREF | 28800 | 30000 | 31200 |
VRREF | 1.207 | 1.232 | 1.257 |
RREF | 19800 | 20000 | 20200 |
IFS (mA) | 358.54 | 400 | 443.18 |
Error (%) | –10.4 | 10.75 |
Parameter | Minimum | Typical | Maximum |
---|---|---|---|
VDAC | 1.0677 | 1.0677 | 1.0677 |
ARREF | 28800 | 30000 | 31200 |
VRREF | 1.207 | 1.232 | 1.257 |
RREF | 19800 | 20000 | 20200 |
IFS (mA) | 164.51 | 200 | 267.26 |
Error (%) | –17.83 | 18.51 |
By keeping VDAC value fixed or close to be fixed, yields much less error variation. The same calculation can be made using a VDAC value with a ±3 % variation to compare error percentage difference as shown in the following tables.
Parameter | Minimum | Typical | Maximum |
---|---|---|---|
VDAC | 0.3983 | 0.4107 | 0.4230 |
ARREF | 28800 | 30000 | 31200 |
VRREF | 1.207 | 1.232 | 1.257 |
RREF | 19800 | 20000 | 20200 |
IFS (mA) | 926.09 | 1000 | 1076.39 |
Error (%) | –7.4 | 7.63 |
Parameter | Minimum | Typical | Maximum |
---|---|---|---|
VDAC | 0.8764 | 0.9035 | 0.9306 |
ARREF | 28800 | 30000 | 31200 |
VRREF | 1.207 | 1.232 | 1.257 |
RREF | 19800 | 20000 | 20200 |
IFS (mA) | 326.52 | 400 | 477.16 |
Error (%) | –18.41 | 19.24 |
Parameter | Minimum | Typical | Maximum |
---|---|---|---|
VDAC | 1.0357 | 1.0677 | 1.0998 |
ARREF | 28800 | 30000 | 31200 |
VRREF | 1.207 | 1.232 | 1.257 |
RREF | 19800 | 20000 | 20200 |
IFS (mA) | 126.67 | 200 | 277.42 |
Error (%) | –36.73 | 38.56 |
Table 18, Table 19, and Table 20 show values closer to the typical values for both VDAC, ARREF, and VRREF. From all these calculations, the error percentages for the 200 mA current are higher because at those very low values, the minimum change greatly affects the full current equation. One method to improve the low-value current accuracy is to use a combination of the MCU DAC and TRQ pin. This method can help improve the error by reducing the need to use only the DAC voltage to achieve the low full-scale current. An example of this method is to achieve 200 mA using the 400 mA DAC setting and the 50% TRQ setting.