SLOSE83 March   2023 DRV8952

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  7. Detailed Description
    1. 7.1  Overview
    2. 7.2  Functional Block Diagram
    3. 7.3  Feature Description
    4. 7.4  Independent Half-bridge Operation
    5. 7.5  Current Sensing and Regulation
      1. 7.5.1 Current Sensing and Feedback
      2. 7.5.2 Current Sensing with External Resistor
      3. 7.5.3 Current Regulation
    6. 7.6  Charge Pump
    7. 7.7  Linear Voltage Regulator
    8. 7.8  VCC Voltage Supply
    9. 7.9  Logic Level Pin Diagram
    10. 7.10 Protection Circuits
      1. 7.10.1 VM Undervoltage Lockout (UVLO)
      2. 7.10.2 VCP Undervoltage Lockout (CPUV)
      3. 7.10.3 Logic Supply Power on Reset (POR)
      4. 7.10.4 Overcurrent Protection (OCP)
      5. 7.10.5 Thermal Shutdown (OTSD)
      6. 7.10.6 nFAULT Output
      7. 7.10.7 Fault Condition Summary
    11. 7.11 Device Functional Modes
      1. 7.11.1 Sleep Mode (nSLEEP = 0)
      2. 7.11.2 Operating Mode
      3. 7.11.3 nSLEEP Reset Pulse
      4. 7.11.4 Functional Modes Summary
  8. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1 Driving Solenoid Loads
        1. 8.1.1.1 Solenoid Driver Typical Application
        2. 8.1.1.2 Thermal Calculations
          1. 8.1.1.2.1 Power Loss Calculations
          2. 8.1.1.2.2 Junction Temperature Estimation
        3. 8.1.1.3 Application Performance Plots
      2. 8.1.2 Driving Stepper Motors
        1. 8.1.2.1 Stepper Driver Typical Application
        2. 8.1.2.2 Power Loss Calculations
        3. 8.1.2.3 Junction Temperature Estimation
      3. 8.1.3 Driving Brushed-DC Motors
        1. 8.1.3.1 Brushed-DC Driver Typical Application
        2. 8.1.3.2 Power Loss Calculation
        3. 8.1.3.3 Junction Temperature Estimation
        4. 8.1.3.4 Driving Single Brushed-DC Motor
      4. 8.1.4 Driving Thermoelectric Coolers (TEC)
      5. 8.1.5 Driving Brushless DC Motors
  9. Package Thermal Considerations
    1. 9.1 DDW Package
      1. 9.1.1 Thermal Performance
        1. 9.1.1.1 Steady-State Thermal Performance
        2. 9.1.1.2 Transient Thermal Performance
  10. 10Power Supply Recommendations
    1. 10.1 Bulk Capacitance
    2. 10.2 Power Supplies
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 PCB Material Recommendation
    3. 11.3 Thermal Considerations
  12. 12Device and Documentation Support
    1. 12.1 Related Documentation
    2. 12.2 Receiving Notification of Documentation Updates
    3. 12.3 Support Resources
    4. 12.4 Trademarks
    5. 12.5 Electrostatic Discharge Caution
    6. 12.6 Glossary
  13. 13Mechanical, Packaging, and Orderable Information
    1. 13.1 Tape and Reel Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Transient Thermal Performance

The driver may experience different transient driving conditions that cause large currents to flow for a short duration of time. These may include -

  • Motor start-up when the rotor is initially stationary.
  • Fault conditions when there is a supply or ground short to one of the motor outputs, and the overcurrent protection triggers.
  • Briefly energizing a motor or solenoid for a limited time, then de-energizing.

For these transient cases, the duration of drive time is another factor that impacts thermal performance in addition to copper area and thickness. In transient cases, the thermal impedance parameter ZθJA denotes the junction-to-ambient thermal performance. The figures in this section show the simulated thermal impedances for 1-oz and 2-oz copper layouts for the DDW package. These graphs indicate better thermal performance with short current pulses. For short periods of drive time, the device die size and package dominates the thermal performance. For longer drive pulses, board layout has a more significant impact on thermal performance. Both graphs show the curves for thermal impedance split due to number of layers and copper area as the duration of the drive pulse duration increases. Long pulses can be considered steady-state performance.

Figure 9-4 DDW package junction-to-ambient thermal impedance for 1-oz copper layouts
Figure 9-5 DDW package junction-to-ambient thermal impedance for 2-oz copper layouts