SLOSE83 March   2023 DRV8952

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  7. Detailed Description
    1. 7.1  Overview
    2. 7.2  Functional Block Diagram
    3. 7.3  Feature Description
    4. 7.4  Independent Half-bridge Operation
    5. 7.5  Current Sensing and Regulation
      1. 7.5.1 Current Sensing and Feedback
      2. 7.5.2 Current Sensing with External Resistor
      3. 7.5.3 Current Regulation
    6. 7.6  Charge Pump
    7. 7.7  Linear Voltage Regulator
    8. 7.8  VCC Voltage Supply
    9. 7.9  Logic Level Pin Diagram
    10. 7.10 Protection Circuits
      1. 7.10.1 VM Undervoltage Lockout (UVLO)
      2. 7.10.2 VCP Undervoltage Lockout (CPUV)
      3. 7.10.3 Logic Supply Power on Reset (POR)
      4. 7.10.4 Overcurrent Protection (OCP)
      5. 7.10.5 Thermal Shutdown (OTSD)
      6. 7.10.6 nFAULT Output
      7. 7.10.7 Fault Condition Summary
    11. 7.11 Device Functional Modes
      1. 7.11.1 Sleep Mode (nSLEEP = 0)
      2. 7.11.2 Operating Mode
      3. 7.11.3 nSLEEP Reset Pulse
      4. 7.11.4 Functional Modes Summary
  8. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1 Driving Solenoid Loads
        1. 8.1.1.1 Solenoid Driver Typical Application
        2. 8.1.1.2 Thermal Calculations
          1. 8.1.1.2.1 Power Loss Calculations
          2. 8.1.1.2.2 Junction Temperature Estimation
        3. 8.1.1.3 Application Performance Plots
      2. 8.1.2 Driving Stepper Motors
        1. 8.1.2.1 Stepper Driver Typical Application
        2. 8.1.2.2 Power Loss Calculations
        3. 8.1.2.3 Junction Temperature Estimation
      3. 8.1.3 Driving Brushed-DC Motors
        1. 8.1.3.1 Brushed-DC Driver Typical Application
        2. 8.1.3.2 Power Loss Calculation
        3. 8.1.3.3 Junction Temperature Estimation
        4. 8.1.3.4 Driving Single Brushed-DC Motor
      4. 8.1.4 Driving Thermoelectric Coolers (TEC)
      5. 8.1.5 Driving Brushless DC Motors
  9. Package Thermal Considerations
    1. 9.1 DDW Package
      1. 9.1.1 Thermal Performance
        1. 9.1.1.1 Steady-State Thermal Performance
        2. 9.1.1.2 Transient Thermal Performance
  10. 10Power Supply Recommendations
    1. 10.1 Bulk Capacitance
    2. 10.2 Power Supplies
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 PCB Material Recommendation
    3. 11.3 Thermal Considerations
  12. 12Device and Documentation Support
    1. 12.1 Related Documentation
    2. 12.2 Receiving Notification of Documentation Updates
    3. 12.3 Support Resources
    4. 12.4 Trademarks
    5. 12.5 Electrostatic Discharge Caution
    6. 12.6 Glossary
  13. 13Mechanical, Packaging, and Orderable Information
    1. 13.1 Tape and Reel Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Power Loss Calculation

For a H-bridge with high-side recirculation, power dissipation for each FET can be approximated as follows:

  • PHS1 = RDS(ON) × IL2

  • PLS1 = 0

  • PHS2 = [RDS(ON) × IL2 x (1-D)] + [2 x VD x IL x tD x fPWM]

  • PLS2 = [RDS(ON) × IL2 x D] + [VM x IL x tRF x fPWM]

For estimating power dissipation for load current flow in the reverse direction, identical equations apply, with only swapping of HS1 with HS2 and LS1 with LS2.

Substituting the following values in the equations above -

  • VM = 24 V

  • IL = 4 A

  • RDS(ON) = 56 mΩ

  • D = 0.5

  • VD = 1 V

  • tD = 300 ns

  • tRF = 140 ns

  • fPWM = 20 kHz

The losses in each FET can be calculated as follows -

PHS1 = 56 mΩ × 42 = 0.896 W

PLS1 = 0

PHS2 = [56 mΩ × 42 x (1-0.5)] + [2 x 1 V x 4 A x 300 ns x 20 KHz] = 0.496 W

PLS2 = [ 56 mΩ × 42 x 0.5] + [24 x 4 A x 140 ns x 20 kHz] = 0.717 W

Quiescent Current Loss PQ = 24 V × 4 mA = 0.096 W

PTOT = 2 x (PHS1 + PLS1 + PHS2 + PLS2) + PQ = 2 x (0.896 + 0 + 0.496 + 0.717) + 0.096 = 4.314 W