SNLS396D January   2012  – January 2016 DS100MB203

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Electrical Characteristics - Serial Management Bus Interface
    7. 6.7 Timing Requirements - Serial Bus Interface
    8. 6.8 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 4-Level Input Configuration Guidelines
    4. 7.4 Device Functional Modes
      1. 7.4.1 Pin Control Mode
      2. 7.4.2 SMBUS Mode
    5. 7.5 Programming
      1. 7.5.1 SMBUS Master Mode
    6. 7.6 Register Maps
      1. 7.6.1 System Management Bus (SMBus) and Configuration Registers
        1. 7.6.1.1 Transfer of Data Through the SMBus
        2. 7.6.1.2 SMBus Transactions
        3. 7.6.1.3 Writing a Register
        4. 7.6.1.4 Reading a Register
  8. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1 General Recommendations
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
      3. 8.2.3 Application Curves
  9. Power Supply Recommendations
    1. 9.1 Power Supply Bypassing
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Documentation Support
      1. 11.1.1 Related Documentation
    2. 11.2 Community Resources
    3. 11.3 Trademarks
    4. 11.4 Electrostatic Discharge Caution
    5. 11.5 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

6 Specifications

6.1 Absolute Maximum Ratings

See (1)(2)(3).
MIN MAX UNIT
Supply voltage (VDD – 2.5-V mode) –0.5 2.75 V
Supply voltage (VIN – 3.3-V mode) –0.5 4 V
LVCMOS input / output voltage –0.5 4 V
CML input voltage –0.5 (VDD + 0.5) V
CML input current –30 30 mA
Junction temperature 125 °C
Lead temperature Soldering (4 sec.)(3) 260 °C
Storage temperature, Tstg –40 150 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/Distributors for availability and specifications.
(3) Soldering Information: SNOA549

6.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±3000 V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) ±1000
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

MIN NOM MAX UNIT
Supply voltage 2.5-V mode 2.375 2.5 2.625 V
3.3-V mode 3 3.3 3.6 V
Ambient temperature –40 25 85 °C
SMBus (SDA, SCL) 3.6 V
Supply noise up to 50 MHz(3) 100 mVp-p

6.4 Thermal Information

THERMAL METRIC(1) DS100MB203 UNIT
NYJ (WQFN)
54 PINS
RθJA Junction-to-ambient thermal resistance, No Airflow, 4 layer JEDEC 26.6 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 10.8 °C/W
RθJB Junction-to-board thermal resistance 4.4 °C/W
ψJT Junction-to-top characterization parameter 0.2 °C/W
ψJB Junction-to-board characterization parameter 4.3 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance 1.5 °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

6.5 Electrical Characteristics(1)(2)

PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
POWER
PD Power dissipation EQ Enabled, VOD = 1 Vp-p, RESET = 0 VDD = 2.5-V supply 390 499 mW
VIN = 3.3-V supply 515 684 mW
LVCMOS / LVTTL DC SPECIFICATIONS
Vih High-level input voltage 2 VDD V
Vil Low-level input voltage 0 0.8 V
Voh High-level output voltage (ALL_DONE pin) Ioh= −4mA 2 V
Vol Low-level output voltage (ALL_DONE pin) Iol= 4mA 0.4 V
Iih Input high current (RESET pin) VIN = 3.6 V,
LVCMOS = 3.6 V
–15 15 µA
Input high current with internal resistors (4–level input pin) VIN = 3.6 V,
LVCMOS = 3.6 V
20 150 µA
Iil Input low current (RESET pin) VIN = 3.6 V,
LVCMOS = 0 V
–15 15 µA
Input low current with internal resistors (4–level input pin) VIN = 3.6 V,
LVCMOS = 0 V
–160 –40 µA
CML RECEIVER INPUTS (IN_n+, IN_n–)
RLrx-diff RX differential return loss 0.05 - 1.25 GHz –16 dB
1.25 - 2.5 GHz –16 dB
2.5 - 4.0 GHz –14 dB
RLrx-cm RX common-mode return loss 0.05 - 2.5 GHz –12 dB
2.5 - 4.0 GHz –8 dB
Zrx-dc RX DC common-mode impedance Tested at VDD = 2.5 V 40 50 60 Ω
Zrx-diff-dc RX DC differntial mode impedance Tested at VDD = 2.5 V 80 100 120 Ω
Vrx-signal-det-diff-pp Signal detect assert level for active data signal 0101 pattern at 8 Gbps 180 mVp-p
Vrx-idle-det-diff-pp Signal detect de-assert level for electrical idle 0101 pattern at 8 Gbps 110 mVp-p
HIGH-SPEED OUTPUTS
Vtx-diff-pp Output voltage differential swing Differential measurement with OUT_n+ and OUT_n-,
terminated by 50 Ω to GND,
AC-Coupled, VID = 1 Vp-p,
DEM_x[1:0] = R, F(5)
0.8 1 1.2 Vp-p
Vtx-de-ratio_3.5 TX de-emphasis ratio VOD = 1 Vp-p,
DEM_x[1:0] = R, F
–3.5 dB
Vtx-de-ratio_6 TX de-emphasis ratio VOD = 1 Vp-p,
DEM_x[1:0] = F, 0
–6 dB
tTX-DJ Deterministic jitter VID = 800 mV, PRBS15 pattern, 8.0 0.05 Gbps, VOD = 1 V, UIpp EQ = 0x00, DE = 0 dB (no input or output trace loss) 0.05 UIpp
tTX-RJ Random jitter VID = 800 mV, 0101 pattern, 8.0 Gbps, 0.3 VOD = 1 V, ps RMS EQ = 0x00, DE = 0 dB, (no input or output trace loss) 0.3 ps RMS
TTX-RISE-FALL TX rise/fall time 20% to 80% of differential output voltage 35 45 ps
TRF-MISMATCH TX rise/fall mismatch 20% to 80% of differential output voltage 0.01 0.1 UI
RLTX-DIFF TX differential return loss 0.05 - 1.25 GHz –16 dB
1.25 - 2.5 GHz –12 dB
2.5 - 4 GHz –11 dB
RLTX-CM TX common-mode return loss 0.05 - 2.5 GHz –12 dB
2.5 - 4 GHz –8 dB
ZTX-DIFF-DC DC differential TX impedance 100 Ω
VTX-CM-AC-PP TX AC common-mode voltage VOD = 1 Vp-p,
DEM_x[1:0] = R, F
100 mVpp
ITX-SHORT TX short circuit current limit Total current the transmitter can supply when shorted to VDD or GND 20 mA
VTX-CM-DC-ACTIVE-IDLE-DELTA Absolute delta of DC common-mode voltage during L0 and electrical idle 100 mV
VTX-CM-DC-LINE-DELTA Absolute delta of DC common-mode voltage between TX+ and TX- 25 mV
TTX-IDLE-DATA Max time to transition to differential DATA signal after IDLE VID = 1 Vp-p, 8 Gbps 3.5 ns
TTX-DATA-IDLE Max time to transition to IDLE after differential DATA signal VID = 1 Vp-p, 8 Gbps 6.2 ns
TPLHD/PHLD High-to-low and low-to-high differential propagation delay EQ = 00(4) 200 ps
TLSK Lane-to-lane skew T = 25°C, VDD = 2.5 V 25 ps
TPPSK Part-to-part propagation delay skew T = 25°C, VDD = 2.5 V 40 ps
TMUX-SWITCH Mux / switch time 100 ns
EQUALIZATION
DJE1 Residual deterministic jitter at 10.3125 Gbps 35-in 4 mils FR4,
VID = 0.8 Vp-p,
PRBS15, EQ = 1F'h,
DEM = 0 dB
0.3 UI
DJE2 Residual deterministic jitter at 8 Gbps 35-in 4 mils FR4,
VID = 0.8 Vp-p,
PRBS15, EQ = 1F'h,
DEM = 0 dB
0.14 UI
DJE3 Residual deterministic jitter at 5 Gbps 35-in 4 mils FR4,
VID = 0.8 Vp-p,
PRBS15,EQ = 1F'h,
DEM = 0 dB
0.1 UI
DJE4 Residual deterministic jitter at 2.5 Gbps 35-in 4 mils FR4,
VID = 0.8 Vp-p,
PRBS15, EQ = 1F'h,
DEM = 0 dB
0.05 UI
DJE5 Residual deterministic jitter at 10.3125 Gbps 10 meters 30 awg cable,
VID = 0.8 Vp-p,
PRBS15, EQ = 2F'h,
DEM = 0 dB
0.3 UI
DJE6 Residual deterministic jitter at 8 Gbps 10 meters 30 awg cable,
VID = 0.8 Vp-p,
PRBS15, EQ = 2F'h,
DEM = 0 dB
0.16 UI
DJE7 Residual deterministic jitter at 5 Gbps 10 meters 30 awg cable,
VID = 0.8 Vp-p,
PRBS15, EQ = 2F'h,
DEM = 0 dB
0.1 UI
DJE8 Residual deterministic jitter at 2.5 Gbps 10 meters 30 awg cable,
VID = 0.8 Vp-p,
PRBS15, EQ = 2F'h,
DEM = 0 dB
0.05 UI
DE-EMPHASIS (MODE = 0)
DJD1 Residual deterministic jitter at 2.5 Gbps and 5.0 Gbps 10-in 4 mils FR4,
VID = 0.8 Vp-p,
PRBS15, EQ = 00,
VOD = 1 Vp-p,
DEM = −3.5 dB
0.1 UI
DJD2 Residual deterministic jitter at 2.5 Gbps and 5.0 Gbps 20-in 4 mils FR4,
VID = 0.8 Vp-p,
PRBS15, EQ = 00,
VOD = 1 Vp-p,
DEM = −9 dB
0.1 UI
DJD3 Residual deterministic jitter at 10.3125 Gbps 20-in 4 mils FR4,
VID = 0.8 Vp-p,
PRBS15, EQ = 00,
VOD = 1 Vp-p,
DEM = −9 dB
0.1 UI
(1) Typical values represent most likely parametric norms at VDD = 2.5V, TA = 25°C., and at the Recommended Operation Conditions at the time of product characterization and are not ensured.
(2) The Electrical Characteristics tables list ensured specifications under the listed Recommended Operating Conditions except as otherwise modified or specified by the Electrical Characteristics Conditions and/or Notes. Typical specifications are estimations only and are not ensured.
(3) Allowed supply noise (mVp-p sine wave) under typical conditions.
(4) Propagation Delay measurements will change slightly based on the level of EQ selected. EQ = 00 will result in the shortest propagation delays.
(5) In GEN3 mode, the output VOD level is not fixed. It will be adjusted automatically based on the VID input amplitude level. The output VOD level set by DEM_x[1:0] in GEN3 mode is dependent on the VID level and the frequency content. The DS100MB203 repeater in GEN3 mode is designed to be transparent, so the TX-FIR (de-emphasis) is passed to the RX to support the PCIe GEN3 handshake negotiation link training.

6.6 Electrical Characteristics – Serial Management Bus Interface

Over recommended operating supply and temperature ranges unless other specified.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
SERIAL BUS INTERFACE DC SPECIFICATIONS
VIL Data, clock input low voltage 0.8 V
VIH Data, clock input high voltage 2.1 3.6 V
IPULLUP Current through pullup resistor or current source High power specification 4 mA
VDD Nominal bus voltage 2.375 3.6 V
ILEAK-Bus Input leakage per bus segment See (1) –200 200 µA
ILEAK-Pin Input leakage per device Pin –15 µA
CI Capacitance for SDA and SCL See (1)(2) 10 pF
RTERM External termination resistance pull to VDD = 2.5 V ± 5% OR 3.3 V ± 10% Pullup VDD = 3.3 V(1)(2)(3) 2000 Ω
Pullup VDD = 2.5 V(1)(2)(3) 1000 Ω
(1) Recommended value.
(2) Recommended maximum capacitance load per bus segment is 400pF.
(3) Maximum termination voltage should be identical to the device supply voltage.

6.7 Timing Requirements – Serial Bus Interface

MIN NOM MAX UNIT
FSMB Bus operating frequency ENSMB = VDD (slave mode) 400 kHz
ENSMB = FLOAT (master mode) 280 400 520 kHz
TBUF Bus free time between stop and start condition 1.3 µs
THD:STA Hold time after (repeated) start condition. After this period, the first clock is generated. At IPULLUP, maximum 0.6 µs
TSU:STA Repeated start condition set-up time 0.6 µs
TSU:STO Stop condition set-up time 0.6 µs
THD:DAT Data hold time 0 ns
TSU:DAT Data set-up time 100 ns
TLOW Clock low period 1.3 µs
THIGH Clock high period See (1) 0.6 50 µs
tF Clock / data fall time 300 ns
tR Clock / data rise time 300 ns
tPOR Time in which a device must be operational after power-on reset See (1)(2) 500 ms
(1) Compatible with SMBus 2.0 physical layer specification. See System Management Bus (SMBus) Specification Version 2.0, section 3.1.1 SMBus Common AC Specifications for details
(2) Specified by Design. Parameter not tested in production.
DS100MB203 30162802.gif Figure 1. CML Output and Rise and FALL Transition Time
DS100MB203 30162803.gif Figure 2. Propagation Delay Timing Diagram
DS100MB203 30162804.gif Figure 3. Transmit IDLE-DATA and DATA-IDLE Response Time
DS100MB203 30162805.gif Figure 4. SMBus Timing Parameters

6.8 Typical Characteristics

DS100MB203 mb203power.gif Figure 5. Power Dissipation (PD) vs Output Differential Voltage (VOD)
DS100MB203 VODvsTEMP.gif Figure 7. Output Differential Voltage (VOD = 1 Vp-p) vs Temperature
DS100MB203 VODvsVDD.gif Figure 6. Output Differential Voltage (VOD = 1 Vp-p) vs Supply Voltage (VDD)