SNLS466A September   2013  – March 2014 DS125BR401A

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Terminal Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 Handling Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Electrical Characteristics — Serial Management Bus Interface
    7. 6.7 Timing Requirements Serial Bus Interface
    8. 6.8 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
      1. 7.2.1 Functional Datapath Blocks
    3. 7.3 Feature Description
    4. 7.4 Device Functional Modes
      1. 7.4.1 Terminal Control Mode:
      2. 7.4.2 SMBus Mode:
      3. 7.4.3 MODE operation with SMBus Registers
    5. 7.5 Signal Conditioning Settings
    6. 7.6 Programming
    7. 7.7 Register Maps
      1. 7.7.1 Transfer Of Data Via The SMBus
      2. 7.7.2 SMBus Transactions
      3. 7.7.3 Writing a Register
      4. 7.7.4 Reading a Register
  8. Applications and Implementation
    1. 8.1 Application Information
      1. 8.1.1 Signal Integrity in SAS-3 Applications
      2. 8.1.2 RX-Detect in SAS/SATA Applications
      3. 8.1.3 Signal Integrity in PCIe Applications
      4. 8.1.4 MODE operation with SMBus Registers
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
      3. 8.2.3 Application Performance Plots
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Trademarks
    2. 11.2 Electrostatic Discharge Caution
    3. 11.3 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

6 Specifications

6.1 Absolute Maximum Ratings(1)

MIN MAX UNIT
Supply Voltage (VDD - 2.5V) -0.5 +2.75 V
Supply Voltage (VIN - 3.3V) -0.5 +4.0 V
LVCMOS Input/Output Voltage -0.5 +4.0 V
CML Input Voltage -0.5V to (VDD+0.5)
CML Input Current -30 +30 mA
(1) “Absolute Maximum Ratings” indicate limits beyond which damage to the device may occur, including inoperability and degradation of device reliability and/or performance. Functional operation of the device and/or non-degradation at the Absolute Maximum Ratings or other conditions beyond those indicated in the Recommended Operating Conditions is not implied. The Recommended Operating Conditions indicate conditions at which the device is functional and the device should not be operated beyond such conditions. Absolute Maximum Numbers are ensured for a junction temperature range of -40°C to +125°C. Models are validated to Maximum Operating Voltages only.

6.2 Handling Ratings

MIN MAX UNIT
ESDHBM HBM, STD - JESD22-A114F 4 kV
ESDCDM CDM, STD - JESD22-C101-D 1 kV
Tstg Storage Temperature Range -40 125 °C
Tsolder Lead Temperature Range Soldering (4 sec.) (1) 260 °C
(1) For soldering specifications: See application note SNOA549.

6.3 Recommended Operating Conditions

MIN TYP MAX UNIT
Supply Voltage (2.5V mode) 2.375 2.5 2.625 V
Supply Voltage (3.3V mode) 3.0 3.3 3.6 V
Ambient Temperature -40 25 +85 °C
SMBus (SDA, SCL) 3.6 V
Supply Noise up to 50 MHz(1) 100 mVp-p

6.4 Thermal Information

THERMAL METRIC(1) DS125BR401A UNIT
WQFN
54 TERMINALS
RθJA Junction-to-ambient thermal resistance 26.6 °C/W
RθJCtop Junction-to-case (top) thermal resistance 10.8
RθJB Junction-to-board thermal resistance 4.4
ψJT Junction-to-top characterization parameter 0.2
ψJB Junction-to-board characterization parameter 4.3
RθJCbot Junction-to-case (bottom) thermal resistance 1.5
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

6.5 Electrical Characteristics

PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
POWER
IDD Current Consumption DEM0 = Float, ,DEM1 = Float
EQ = 0, VOD = 0.8VP-P,
RXDET = 1, PWDN = 0
200 280 mA
Power Down Current Consumption PWDN = 1 14 27 mA
VDD Integrated LDO Regulator VIN = 3.0 - 3.6 V 2.375 2.5 2.625 V
LVCMOS / LVTTL DC SPECIFICATIONS
Vih25 High Level Input Voltage 2.5 V Supply Mode 1.7 VDD V
Vih33 High Level Input Voltage 3.3 V Supply Mode 1.7 VIN V
Vil Low Level Input Voltage 0 0.7 V
Voh High Level Output Voltage
(ALL_DONE Terminal)
Ioh = −4mA 2.0 V
Vol Low Level Output Voltage
(ALL_DONE Terminal)
Iol = 4mA 0.4 V
Iih Input High Current (PWDN Terminal) VIN = 3.6 V,
LVCMOS = 3.6 V
-15 +15 uA
Iil Input Low Current (PWDN Terminal) VIN = 3.6 V,
LVCMOS = 0 V
-15 +15 uA
4-LEVEL INPUT DC SPECIFICATIONS
Iih Input High Current with internal resistors
(4–level input Terminal)
VIN = 3.6 V,
LVCMOS = 3.6 V
+20 +150 uA
Iil Input Low Current with internal resistors
(4–level input Terminal)
VIN = 3.6 V,
LVCMOS = 0 V
-160 -40 uA
Vth Threshold 0 / R VDD = 2.5V (2.5V supply mode)
Internal LDO Disabled
See Table 1 for details
0.45 V
Threshold R / Float 1.2
Threshold Float / 1 2
Threshold 0 / R VIN = 3.3V (3.3V supply mode)
Internal LDO Enabled
See Table 1 for details.
0.6 V
Threshold R / Float 1.6
Threshold Float / 1 2.6
CML RECEIVER INPUTS (IN_n+, IN_n-)
RLRX-diff RX Differential return loss SDD11 10 MHz -19 dB
SDD11 2 GHz -14
SDD11 6-11.1 GHz -8
RLRX-cm RX Common mode return loss 0.05 - 5 GHz -10 dB
ZRX-dc RX DC common mode impedance Tested at VDD = 2.5 V 40 50 60 Ω
ZRX-diff-dc RX DC differential mode impedance Tested at VDD = 2.5 V 80 100 120 Ω
VRX-signal-det-diff-pp Signal detect assert level for active data signal SD_TH = F (float),
0101 pattern at 12 Gbps
50 mVp-p
VRX-idle-det-diff-pp Signal detect de-assert level for electrical idle SD_TH = F (float),
0101 pattern at 12 Gbps
37 mVp-p
HIGH SPEED OUTPUTS
TTX-RISE-FALL Transmitter rise/fall time (3) 20% to 80% of differential output voltage 40 ps
TRF-MISMATCH Transmitter rise/fall mismatch 20% to 80% of differential output voltage 0.01 UI
RLTX-DIFF TX Differential return loss SDD22 10 MHz - 2 GHz -15 dB
SDD22 5.5 GHz -12
SDD22 11.1 GHz -10 dB
RLTX-CM TX Common mode return loss 0.05 - 5 GHz -10 dB
ZTX-DIFF-DC DC differential TX impedance 100 Ω
ITX-SHORT Transmitter short circuit current limit Total current, output shorted to VDD or GND 20 mA
VTX-CM-DC-ACTIVE-IDLE-DELTA Absolute delta of DC common mode voltage during L0 and electrical idle 100 mV
VTX-CM-DC-LINE-DELTA Absolute delta of DC common mode voltage between TX+ and TX- 25 mV
HIGH SPEED OUTPUTS (A-CHANNELS)
VTXA-diff1-pp Output Voltage Differential Swing Differential measurement with OUTA_n+ and OUTA_n-,
AC-Coupled and terminated by 50Ω to GND,
Inputs AC-Coupled,
VID = 600 mVp-p
VOD = 001'b (800mV)
375 465 600 mVp-p
VTXA-diff2-pp Output Voltage Differential Swing Differential measurement with OUTA_n+ and OUTA_n-,
AC-Coupled and terminated by 50Ω to GND,
Inputs AC-Coupled,
VID = 1000 mVp-p
VOD = 001'b (800mV)
550 675 825 mVp-p
VTXA-diff3-pp Output Voltage Differential Swing Differential measurement with OUTA_n+ and OUTA_n-,
AC-Coupled and terminated by 50Ω to GND,
Inputs AC-Coupled,
VID = 600 mVp-p
DEMA[1:0] = 10, VOD = 1300mV
475 600 750 Vp-p
VTXA-diff4-pp Output Voltage Differential Swing Differential measurement with OUTA_n+ and OUTA_n-,
AC-Coupled and terminated by 50Ω to GND,
Inputs AC-Coupled,
VID = 1000 mVp-p
VOD = 110'b (1300mV)
775 915 1125 Vp-p
TTXA-IDLE-DATA Time to transition to valid differential signal after idle VID = 1.0 Vp-p, 3 Gbps 0.04 ns
TTXA-DATA-IDLE Time to transition to idle after differential signal VID = 1.0 Vp-p, 3 Gbps 0.70 ns
TPDEQA Differential propagation delay - Channel A EQ = Level 1 to Level 4 80 ps
HIGH SPEED OUTPUTS (B-CHANNELS)
VTXB-diff1-pp Output Voltage Differential Swing Differential measurement with OUTB_n+ and OUTB_n-,
AC-Coupled and terminated by 50Ω to GND,
Inputs AC-Coupled,
VID = 1.0 Vp-p, MODE_B = 1
DEMB1 = 0, DEMB0 = 1(4)
0.8 1.0 1.2 Vp-p
VTXB-diff2-pp Output Voltage Differential Swing Differential measurement with OUTB_n+ and OUTB_n-,
AC-Coupled and terminated by 50Ω to GND,
Inputs AC-Coupled,
VID = 1.0 Vp-p, MODE_B = 0
DEMB1 = 0, DEMB0 = R
670 820 930 mVp-p
VTXB-diff3-pp Output Voltage Differential Swing Differential measurement with OUTB_n+ and OUTB_n-,
AC-Coupled and terminated by 50Ω to GND,
Inputs AC-Coupled,
VID = 1.0 Vp-p, MODE_B = 0
DEMB1 = R, DEMB0 = FLOAT
950 1140 1250 mVp-p
VTXB-de-ratio_3.5 TX de-emphasis ratio VOD = 1.0 Vp-p,
DEM0 = 0, DEM1 = R, MODE_B = 0
OUTB_n only Gen 1 & 2 mode
−3.5 dB
VTXB-de-ratio_6 TX de-emphasis ratio VOD = 1.0 Vp-p,
DEM0 = R, DEM1 = R, MODE_B = 0
OUTB_n only in Gen 1 & 2 mode
−6 dB
TTXB-IDLE-DATA Time to transition to valid differential signal after idle VID = 1.0 Vp-p, 3 Gbps 3.5 ns
TTXB-DATA-IDLE Time to transition to idle after differential signal VID = 1.0 Vp-p, 3 Gbps 5.0 ns
TPDEQB Differential propagation delay - Channel B EQ = 00(2) 135 ps
EQUALIZATION (A-CHANNELS)
DJE1A Residual deterministic jitter at 6 Gbps 5” Differential Stripline, 5mil trace width, FR4,
VID = 0.8 Vp-p,
PRBS15, EQ = 01'h,
VOD = 1.3V, DEM = 0 dB
0.06 UI
DJE3A Residual deterministic jitter at 12 Gbps 5” Differential Stripline, 5mil trace width, FR4,
VID = 0.8 Vp-p,
PRBS15, EQ = 01'h,
VOD = 1.3V, DEM = 0 dB
0.12 UI
EQUALIZATION (B-CHANNELS)
DJE1B Residual deterministic jitter at 12 Gbps 30” Differential Stripline, 5mil trace width, FR4,
VID = 0.6 Vp-p,
PRBS15, EQ = 07'h,
DEM = 0 dB
0.18 UI
DJE2B Residual deterministic jitter at 12 Gbps 5 meters 30 awg cable,
VID = 0.6 Vp-p,
PRBS15, EQ = 07'h,
DEM = 0 dB
0.25 UI
DE-EMPHASIS (B-CHANNELS, GEN 1&2 MODE ONLY)
DJD1 Residual deterministic jitter at 12 Gbps

Input Channel: 20" Differential Stripline, 5mil trace width, FR4,


Output Channel: 10” Differential Stripline, 5mil trace width, FR4,
VID = 0.6 Vp-p,
PRBS15, EQ = 03'h,
VOD = 1.0 Vp-p,
DEMB = −3.5 dB
0.1 UI
(1) Allowed supply noise (mVp-p sine wave) under typical conditions.
(2) Propagation Delay measurements will change slightly based on the level of EQ selected. EQ = 00 will result in the shortest propagation delays.
(3) Rise / Fall time measurements will on A-Channels will vary based on EQ setting, Input Amplitude, and input edge rate.
(4) In SAS-3 and PCIe GEN3 mode, the output VOD level is not fixed. It will be adjusted automatically based on the VID input amplitude level. The output VOD level set by DEMA/B[1:0] in this mode BOUTn is dependent on the VID level and the frequency content. The DS125BR401A repeater is designed to be transparent in this mode, so the TX-FIR (de-emphasis) is passed to the RX to support the handshake negotiation link training.

6.6 Electrical Characteristics — Serial Management Bus Interface

Over recommended operating supply and temperature ranges unless other specified.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
SERIAL BUS INTERFACE DC SPECIFICATIONS
VIL Data, Clock Input Low Voltage 0.8 V
VIH Data, Clock Input High Voltage 2.1 3.6 V
VOL Output Low Voltage SDA or SCL, IOL = 1.25 mA 0 0.36 V
VDD Nominal Bus Voltage 2.375 3.6 V
IIH-Terminal Input Leakage Per Device Terminal +20 +150 µA
IIL-Terminal Input Leakage Per Device Terminal -160 -40 µA
CI Capacitance for SDA and SCL See(1)(2) < 5 pF
RTERM External Termination Resistance pull to VDD = 2.5V ± 5% OR 3.3V ± 10% Pullup VDD = 3.3V(1)(2)(3) 2000 Ω
Pullup VDD = 2.5V(1)(2)(3) 1000 Ω
(1) Recommended value.
(2) Recommended maximum capacitance load per bus segment is 400pF.
(3) Maximum termination voltage should be identical to the device supply voltage.

6.7 Timing Requirements Serial Bus Interface

PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
SERIAL BUS INTERFACE TIMING SPECIFICATIONS
FSMB Bus Operating Frequency ENSMB = VDD (Slave Mode) 400 kHz
ENSMB = FLOAT (Master Mode) 280 400 520 kHz
tFALL SDA Fall Time Read operation
RPU = 4.7K, Cb < 50pF
60 ns
tRISE SDA Rise Time Read operation
RPU = 4.7K, Cb < 50pF
140 ns
tF Clock/Data Fall Time See(1) 300 ns
tR Clock/Data Rise Time See(1) 1000 ns
(1) Compliant to SMBus 2.0 physical layer specification. See System Management Bus (SMBus) Specification Version 2.0, section 3.1.1 SMBus common AC specifications for details.
edge.gifFigure 1. Output and Rise And Fall Transition Time
30198703.gifFigure 2. Propagation Delay Timing Diagram
30198704.gifFigure 3. Transmit Idle-Data and Data-Idle Response Time
30198794.gifFigure 4. SMBus Timing Parameters

6.8 Typical Characteristics

30198727.gif
Figure 5. Typical Power Dissipation vs. Output Voltage Amplitude Setting
30198729.gif
Figure 7. Channel-B Output Differential Voltage Vs. Temperature (VOD = 1000 mV setting)
30198728.gif
Figure 6. Channel-B Output Differential Voltage vs. VDD (VOD = 1000 mV setting)