SNLS499D April   2016  – October 2019 DS90UB914A-Q1

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
    1.     Device Images
      1.      Simplified Schematic
  4. Revision History
  5. Device Comparison Table
  6. Pin Configuration and Functions
    1.     Pin Functions: DS90UB914A-Q1 Deserializer
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 AC Timing Specifications (SCL, SDA) - I2C-Compatible
    7. 7.7 Bidirectional Control Bus DC Timing Specifications (SCL, SDA) - I2C-Compatible
    8. 7.8 Deserializer Switching Characteristics
    9. 7.9 Typical Characteristics
  8. Parameter Measurement Information
    1. 8.1 Timing Diagrams and Test Circuits
  9. Detailed Description
    1. 9.1 Overview
    2. 9.2 Functional Block Diagram
    3. 9.3 Feature Description
      1. 9.3.1  Serial Frame Format
      2. 9.3.2  Line Rate Calculations for the DS90UB913A/914A
      3. 9.3.3  Deserializer Multiplexer Input
      4. 9.3.4  Error Detection
      5. 9.3.5  Synchronizing Multiple Cameras
      6. 9.3.6  General-Purpose I/O (GPIO) Descriptions
      7. 9.3.7  LVCMOS VDDIO Option
      8. 9.3.8  EMI Reduction
        1. 9.3.8.1 Deserializer Staggered Output
        2. 9.3.8.2 Spread Spectrum Clock Generation (SSCG) on the Deserializer
      9. 9.3.9  Pixel Clock Edge Select (TRFB / RRFB)
      10. 9.3.10 Power Down
    4. 9.4 Device Functional Modes
      1. 9.4.1 DS90UB913A/914A Operation With External Oscillator as Reference Clock
      2. 9.4.2 DS90UB913A/914A Operation With Pixel Clock From Imager as Reference Clock
      3. 9.4.3 MODE Pin on Deserializer
      4. 9.4.4 Clock-Data Recovery Status Flag (LOCK), Output Enable (OEN) and Output State Select (OSS_SEL)
      5. 9.4.5 Built-In Self Test
      6. 9.4.6 BIST Configuration and Status
      7. 9.4.7 Sample BIST Sequence
    5. 9.5 Programming
      1. 9.5.1 Programmable Controller
      2. 9.5.2 Description of Bidirectional Control Bus and I2C Modes
      3. 9.5.3 I2C Pass-Through
      4. 9.5.4 Slave Clock Stretching
      5. 9.5.5 ID[x] Address Decoder on the Deserializer
      6. 9.5.6 Multiple Device Addressing
    6. 9.6 Register Maps
  10. 10Application and Implementation
    1. 10.1 Application Information
      1. 10.1.1 Power Over Coax
      2. 10.1.2 Power-Up Requirements and PDB Pin
      3. 10.1.3 AC Coupling
      4. 10.1.4 Transmission Media
      5. 10.1.5 Adaptive Equalizer – Loss Compensation
    2. 10.2 Typical Applications
      1. 10.2.1 Coax Application
        1. 10.2.1.1 Design Requirements
        2. 10.2.1.2 Detailed Design Procedure
        3. 10.2.1.3 Application Curves
      2. 10.2.2 STP Application
        1. 10.2.2.1 Design Requirements
        2. 10.2.2.2 Detailed Design Procedure
        3. 10.2.2.3 Application Curves
  11. 11Power Supply Recommendations
  12. 12Layout
    1. 12.1 Layout Guidelines
      1. 12.1.1 Interconnect Guidelines
    2. 12.2 Layout Example
  13. 13Device and Documentation Support
    1. 13.1 Documentation Support
      1. 13.1.1 Related Documentation
    2. 13.2 Receiving Notification of Documentation Updates
    3. 13.3 Community Resources
    4. 13.4 Trademarks
    5. 13.5 Electrostatic Discharge Caution
    6. 13.6 Glossary
  14. 14Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Overview

The DS90UB913A-Q1 is optimized to interface with the DS90UB914A-Q1 using a 50-Ω coax interface. The DS90UB913A-Q1 will also work with the DS90UB914A-Q1 using an STP interface. The DS90UB914A-Q1 can also work with the DS90UB953-Q1. DS90UB953A-Q1, or DS90UB935-Q1 in the backwards compatible mode (see the Backwards Compatibility Modes for Operation with Parallel Output Deserializers).

The DS90UB913A/914A FPD-Link III chipsets are intended to link mega-pixel camera imagers and video processors in ECUs. The Serializer/Deserializer chipset can operate from 25 MHz to 100 MHz pixel clock frequency. The DS90UB913A-Q1 device transforms a 10/12-bit wide parallel LVCMOS data bus along with a bidirectional control channel control bus into a single high-speed differential pair. The high speed serial bit stream contains an embedded clock and DC-balanced information which enhances signal quality to support AC coupling. The DS90UB914A-Q1 device receives the single serial data stream and converts it back into a 10/12-bit wide parallel data bus together with the control channel data bus. The DS90UB913A/914A chipsets can accept up to:

  • 12-bits of DATA + 2 bits SYNC for an input PCLK range of 25 MHz to 50 MHz in the 12-bit low frequency mode. Note: No HS/VS restrictions (raw).
  • 12-bits of DATA + 2 SYNC bits for an input PCLK range of 37.5 MHz to 75 MHz in the 12-bit high frequency mode. Note: No HS/VS restrictions (raw).
  • 10-bits of DATA + 2 SYNC bits for an input PCLK range of 50 MHz to 100 MHz in the 10-bit mode. Note: HS/VS restricted to no more than one transition per 10 PCLK cycles.

The DS90UB914A-Q1 device has a 2:1 multiplexer which allows customers to select between two Serializer inputs. The control channel function of the DS90UB913A/DS90UB914A-Q1 chipset provides bidirectional communication between the image sensor and ECUs. The integrated bidirectional control channel transfers data bidirectionally over the same differential pair used for video data interface. This interface offers advantages over other chipsets by eliminating the need for additional wires for programming and control. The bidirectional control channel bus is controlled via an I2C port. The bidirectional control channel offers asymmetrical communication and is not dependent on video blanking intervals.

The DS90UB913A/914A chipset offer customers the choice to work with different clocking schemes. The DS90UB913A/914A chipsets can use an external oscillator as the reference clock source for the PLL (see section DS90UB913A/914A Operation With External Oscillator as Reference Clock) or PCLK from the imager as primary reference clock to the PLL (see section DS90UB913A/914A Operation With Pixel Clock From Imager as Reference Clock).