SNLS499D April   2016  – October 2019 DS90UB914A-Q1

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
    1.     Device Images
      1.      Simplified Schematic
  4. Revision History
  5. Device Comparison Table
  6. Pin Configuration and Functions
    1.     Pin Functions: DS90UB914A-Q1 Deserializer
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 AC Timing Specifications (SCL, SDA) - I2C-Compatible
    7. 7.7 Bidirectional Control Bus DC Timing Specifications (SCL, SDA) - I2C-Compatible
    8. 7.8 Deserializer Switching Characteristics
    9. 7.9 Typical Characteristics
  8. Parameter Measurement Information
    1. 8.1 Timing Diagrams and Test Circuits
  9. Detailed Description
    1. 9.1 Overview
    2. 9.2 Functional Block Diagram
    3. 9.3 Feature Description
      1. 9.3.1  Serial Frame Format
      2. 9.3.2  Line Rate Calculations for the DS90UB913A/914A
      3. 9.3.3  Deserializer Multiplexer Input
      4. 9.3.4  Error Detection
      5. 9.3.5  Synchronizing Multiple Cameras
      6. 9.3.6  General-Purpose I/O (GPIO) Descriptions
      7. 9.3.7  LVCMOS VDDIO Option
      8. 9.3.8  EMI Reduction
        1. 9.3.8.1 Deserializer Staggered Output
        2. 9.3.8.2 Spread Spectrum Clock Generation (SSCG) on the Deserializer
      9. 9.3.9  Pixel Clock Edge Select (TRFB / RRFB)
      10. 9.3.10 Power Down
    4. 9.4 Device Functional Modes
      1. 9.4.1 DS90UB913A/914A Operation With External Oscillator as Reference Clock
      2. 9.4.2 DS90UB913A/914A Operation With Pixel Clock From Imager as Reference Clock
      3. 9.4.3 MODE Pin on Deserializer
      4. 9.4.4 Clock-Data Recovery Status Flag (LOCK), Output Enable (OEN) and Output State Select (OSS_SEL)
      5. 9.4.5 Built-In Self Test
      6. 9.4.6 BIST Configuration and Status
      7. 9.4.7 Sample BIST Sequence
    5. 9.5 Programming
      1. 9.5.1 Programmable Controller
      2. 9.5.2 Description of Bidirectional Control Bus and I2C Modes
      3. 9.5.3 I2C Pass-Through
      4. 9.5.4 Slave Clock Stretching
      5. 9.5.5 ID[x] Address Decoder on the Deserializer
      6. 9.5.6 Multiple Device Addressing
    6. 9.6 Register Maps
  10. 10Application and Implementation
    1. 10.1 Application Information
      1. 10.1.1 Power Over Coax
      2. 10.1.2 Power-Up Requirements and PDB Pin
      3. 10.1.3 AC Coupling
      4. 10.1.4 Transmission Media
      5. 10.1.5 Adaptive Equalizer – Loss Compensation
    2. 10.2 Typical Applications
      1. 10.2.1 Coax Application
        1. 10.2.1.1 Design Requirements
        2. 10.2.1.2 Detailed Design Procedure
        3. 10.2.1.3 Application Curves
      2. 10.2.2 STP Application
        1. 10.2.2.1 Design Requirements
        2. 10.2.2.2 Detailed Design Procedure
        3. 10.2.2.3 Application Curves
  11. 11Power Supply Recommendations
  12. 12Layout
    1. 12.1 Layout Guidelines
      1. 12.1.1 Interconnect Guidelines
    2. 12.2 Layout Example
  13. 13Device and Documentation Support
    1. 13.1 Documentation Support
      1. 13.1.1 Related Documentation
    2. 13.2 Receiving Notification of Documentation Updates
    3. 13.3 Community Resources
    4. 13.4 Trademarks
    5. 13.5 Electrostatic Discharge Caution
    6. 13.6 Glossary
  14. 14Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Power Supply Recommendations

This device is designed to operate from an input core voltage supply of 1.8 V. Some devices provide separate power and ground terminals for different portions of the circuit. This is done to isolate switching noise effects between different sections of the circuit. Separate planes on the PCB are typically not required. Terminal description tables typically provide guidance on which circuit blocks are connected to which power terminal pairs. In some cases, an external filter may be used to provide clean power to sensitive circuits such as PLLs. The voltage applied on VDDIO (1.8 V, 3.3 V) or other power supplies making up VDD_n (1.8 V) should be at the input pin - any board level DC drop should be compensated (i.e. ferrite beads in the path of the power supply rails).