SNLS313I September   2009  – October  2019 DS90UR905Q-Q1 , DS90UR906Q-Q1

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
    1.     Device Images
      1.      Application Diagram
  4. Revision History
  5. Description (continued)
  6. Pin Configuration and Functions
    1.     DS90UR905Q-Q1 Serializer Pin Functions
    2.     DS90UR906Q-Q1 Deserializer Pin Functions
  7. Specifications
    1. 7.1  Absolute Maximum Ratings
    2. 7.2  ESD Ratings
    3. 7.3  Recommended Operating Conditions
    4. 7.4  Thermal Information
    5. 7.5  Serializer DC Electrical Characteristics
    6. 7.6  Deserializer DC Electrical Characteristics
    7. 7.7  DC and AC Serial Control Bus Characteristics
    8. 7.8  Timing Requirements for DC and AC Serial Control Bus
    9. 7.9  Timing Requirements for Serializer PCLK
    10. 7.10 Timing Requirements for Serial Control Bus
    11. 7.11 Switching Characteristics: Serializer
    12. 7.12 Switching Characteristics: Deserializer
    13. 7.13 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagrams
    3. 8.3 Feature Description
      1. 8.3.1 Data Transfer
      2. 8.3.2 Video Control Signal Filter — Serializer and Deserializer
      3. 8.3.3 Serializer Functional Description
        1. 8.3.3.1 EMI Reduction Features
          1. 8.3.3.1.1 Serializer Spread Spectrum Compatibility
        2. 8.3.3.2 Signal Quality Enhancers
          1. 8.3.3.2.1 Serializer VOD Select (VODSEL)
          2. 8.3.3.2.2 Serializer De-Emphasis (De-Emph)
        3. 8.3.3.3 Power-Saving Features
          1. 8.3.3.3.1 Serializer Power-down Feature (PDB)
          2. 8.3.3.3.2 Serializer Stop Clock Feature
          3. 8.3.3.3.3 1.8-V or 3.3-V VDDIO Operation
        4. 8.3.3.4 Serializer Pixel Clock Edge Select (RFB)
        5. 8.3.3.5 Optional Serial Bus Control
        6. 8.3.3.6 Optional BIST Mode
      4. 8.3.4 Deserializer Functional Description
        1. 8.3.4.1  Signal Quality Enhancers
          1. 8.3.4.1.1 Deserializer Input Equalizer Gain (EQ)
        2. 8.3.4.2  EMI Reduction Features
          1. 8.3.4.2.1 Deserializer Output Slew (OS_PCLK/DATA)
          2. 8.3.4.2.2 Deserializer Common-Mode Filter Pin (CMF) — Optional
          3. 8.3.4.2.3 Deserializer SSCG Generation — Optional
          4. 8.3.4.2.4 1.8-V or 3.3-V VDDIO Operation
        3. 8.3.4.3  Power-Saving Features
          1. 8.3.4.3.1 Deserializer Power-Down Feature (PDB)
          2. 8.3.4.3.2 Deserializer Stop Stream SLEEP Feature
        4. 8.3.4.4  Deserializer CLOCK-DATA RECOVERY STATUS FLAG (LOCK) and OUTPUT STATE SELECT (OSS_SEL)
        5. 8.3.4.5  Deserializer Oscillator Output (Optional)
        6. 8.3.4.6  Deserializer OP_LOW (Optional)
        7. 8.3.4.7  Deserializer Pixel Clock Edge Select (RFB)
        8. 8.3.4.8  Deserializer Control Signal Filter (Optional)
        9. 8.3.4.9  Deserializer Low Frequency Optimization (LF_Mode)
        10. 8.3.4.10 Deserializer Map Select
        11. 8.3.4.11 Deserializer Strap Input Pins
        12. 8.3.4.12 Optional Serial Bus Control
        13. 8.3.4.13 Optional BIST Mode
      5. 8.3.5 Built-In Self Test (BIST)
        1. 8.3.5.1 Sample BIST Sequence
        2. 8.3.5.2 BER Calculations
      6. 8.3.6 Optional Serial Bus Control
    4. 8.4 Device Functional Modes
      1. 8.4.1 Serializer and Deserializer Operating Modes and Backward Compatibility (CONFIG[1:0])
    5. 8.5 Register Maps
  9. Application and Implementation
    1. 9.1 Application Information
      1. 9.1.1 Display Application
      2. 9.1.2 Live Link Insertion
      3. 9.1.3 Alternate Color / Data Mapping
    2. 9.2 Typical Applications
      1. 9.2.1 DS90UR905Q-Q1 Typical Connection
        1. 9.2.1.1 Design Requirements
        2. 9.2.1.2 Detailed Design Procedure
        3. 9.2.1.3 Application Curves
      2. 9.2.2 DS90UR906Q-Q1 Typical Connection
        1. 9.2.2.1 Design Requirements
        2. 9.2.2.2 Detailed Design Procedure
        3. 9.2.2.3 Application Curves
  10. 10Power Supply Recommendations
    1. 10.1 Power Up Requirements and PDB Pin
  11. 11Layout
    1. 11.1 Layout Guidelines
      1. 11.1.1 Transmission Media
      2. 11.1.2 LVDS Interconnect Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Documentation Support
      1. 12.1.1 Related Documentation
    2. 12.2 Related Links
    3. 12.3 Community Resource
    4. 12.4 Trademarks
    5. 12.5 Electrostatic Discharge Caution
    6. 12.6 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Layout Guidelines

Circuit board layout and stack-up for the LVDS serializer and deserializer devices should be designed to provide low-noise power feed to the device. Good layout practice will also separate high frequency or high-level inputs and outputs to minimize unwanted stray noise pickup, feedback and interference. Power system performance may be greatly improved by using thin dielectrics (2 to 4 mils) for power / ground sandwiches. This arrangement provides plane capacitance for the PCB power system with low-inductance parasitics, which has proven especially effective at high frequencies, and makes the value and placement of external bypass capacitors less critical. External bypass capacitors should include both RF ceramic and tantalum electrolytic types. RF capacitors may use values in the range of 0.01 µF to 0.1 µF. Tantalum capacitors may be in the 2.2 µF to 10 µF range. Voltage rating of the tantalum capacitors should be at least 5× the power supply voltage being used.

Surface mount capacitors are recommended due to their smaller parasitics. When using multiple capacitors per supply pin, locate the smaller value closer to the pin. A large bulk capacitor is recommend at the point of power entry. This is typically in the 50 µF to 100 µF range and will smooth low frequency switching noise. It is recommended to connect power and ground pins directly to the power and ground planes with bypass capacitors connected to the plane with via on both ends of the capacitor. Connecting power or ground pins to an external bypass capacitor will increase the inductance of the path.

A small body size X7R chip capacitor, such as 0603, is recommended for external bypass. Its small body size reduces the parasitic inductance of the capacitor. The user must pay attention to the resonance frequency of these external bypass capacitors, usually in the range of 20-30 MHz. To provide effective bypassing, multiple capacitors are often used to achieve low impedance between the supply rails over the frequency of interest. At high frequency, it is also a common practice to use two vias from power and ground pins to the planes, reducing the impedance at high frequency.

Some devices provide separate power and ground pins for different portions of the circuit. This is done to isolate switching noise effects between different sections of the circuit. Separate planes on the PCB are typically not required. Pin Description tables typically provide guidance on which circuit blocks are connected to which power pin pairs. In some cases, an external filter many be used to provide clean power to sensitive circuits such as PLLs.

Use at least a four layer board with a power and ground plane. Locate LVCMOS signals away from the LVDS lines to prevent coupling from the LVCMOS lines to the LVDS lines. Closely-coupled differential lines of 100 Ohms are typically recommended for LVDS interconnect. The closely coupled lines help to ensure that coupled noise will appear as common-mode and thus is rejected by the receivers. The tightly coupled lines will also radiate less.

Information on the WQFN style package is provided in Leadless Leadframe Package (LLP) Application Report (SNOA401).