SLLSES1D December   2015  – September 2020 HD3SS3220

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
    1.     Pin Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Timing Requirements
  7. Detailed Description
    1. 7.1 Overview
      1. 7.1.1 Cables, Adapters, and Direct Connect Devices
        1. 7.1.1.1 USB Type-C receptacles and Plugs
        2. 7.1.1.2 USB Type-C Cables
        3. 7.1.1.3 Legacy Cables and Adapters
        4. 7.1.1.4 Direct Connect Device
        5. 7.1.1.5 Audio Adapters
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  DFP/Source – Downstream Facing Port
      2. 7.3.2  UFP/Sink – Upstream Facing Port
      3. 7.3.3  DRP – Dual Role Port
      4. 7.3.4  Cable Orientation and Mux Control
      5. 7.3.5  Type-C Current Mode
      6. 7.3.6  Accessory Support
      7. 7.3.7  Audio Accessory
      8. 7.3.8  Debug Accessory
      9. 7.3.9  VCONN support for Active Cables
      10. 7.3.10 I2C and GPIO Control
      11. 7.3.11 HD3SS3220 V(BUS) Detection
      12. 7.3.12 VDD5 and VCC33 Power-On Requirements
    4. 7.4 Device Functional Modes
      1. 7.4.1 Unattached Mode
      2. 7.4.2 Active Mode
      3. 7.4.3 Dead Battery
      4. 7.4.4 Shutdown Mode
    5. 7.5 Programming
    6. 7.6 Register Maps
      1. 7.6.1 Device Identification Register (offset = 0x07 through 0x00) [reset = 0x00, 0x54, 0x55, 0x53, 0x42, 0x33, 0x32, 0x32]
      2. 7.6.2 Connection Status Register (offset = 0x08) [reset = 0x00]
      3. 7.6.3 Connection Status and Control Register (offset = 0x09) [reset = 0x20]
      4. 7.6.4 General Control Register (offset = 0x0A) [reset = 0x00]
      5. 7.6.5 Device Revision Register (offset = 0xA0) [reset = 0x02]
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application, DRP Port
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
      3. 8.2.3 Typical Application, DFP Port
        1. 8.2.3.1 Design Requirements
        2. 8.2.3.2 Detailed Design Procedure
      4. 8.2.4 Typical Application, UFP Port
        1. 8.2.4.1 Design Requirements
        2. 8.2.4.2 Detailed Design Procedure
  9. Layout
    1. 9.1 Layout Guidelines
      1. 9.1.1 Suggested PCB Stackups
      2. 9.1.2 High-Speed Signal Trace Length Matching
      3. 9.1.3 Differential Signal Spacing
      4. 9.1.4 High-Speed Differential Signal Rules
      5. 9.1.5 Symmetry in the Differential Pairs
      6. 9.1.6 Via Discontinuity Mitigation
      7. 9.1.7 Surface-Mount Device Pad Discontinuity Mitigation
      8. 9.1.8 ESD/EMI Considerations
    2. 9.2 Layout
  10. 10Device and Documentation Support
    1. 10.1 Receiving Notification of Documentation Updates
    2. 10.2 Community Resources
    3. 10.3 Trademarks
  11. 11Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Active Mode

Active mode is defined as the port being attached. In active mode, all GPIOs are operational, and I2C is read / write (R/W). When in active mode, the HD3SS3220 device communicates to the AP that the USB port is attached. This communication happens through the ID pin if HD3SS3220 is configured as a DFP or DRP connect as source. If HD3SS3220 is configured as a UFP or a DRP connected as a sink, the OUT1/OUT2 and INT_N/OUT3 pins are used. The HD3SS3220 device exits active mode under the following conditions:

  • Cable unplug
  • VBUS removal if attached as a UFP
  • Dead battery; system battery or supply is removed
  • EN_N is floated or pulled high